

KINGSTON UNIVERSITY

Faculty of Computing, Information Systems & Mathematics

WLab: Providing E-Learning Tools for ICT Students using Virtual
Machines as Learning Objects

Paul Neve

A thesis submitted in partial fulfilment of the requirements of
Kingston University for the degree of MSc in Informatics

September 2010

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 2	 September	 2010	

Table	 of	 contents	
List	 of	 figures	 and	 tables.. 4	

Glossary	 of	 terms	 used .. 6	

Abstract .. 10	

Acknowledgements... 11	

1	 Introduction	 and	 background .. 12	
1.1	 Why	 electronic	 delivery	 of	 ICT	 courses	 is	 problematic ...12	
1.2	 Introducing	 virtualisation...13	
1.3	 Virtualisation	 in	 education ...13	
1.4	 Virtual	 machines	 as	 learning	 objects ...14	
1.5	 Introducing	 WLab:	 a	 new	 paradigm	 for	 a	 virtualised	 ICT	 lab	 environment...................15	
2	 Project	 preparation ... 17	
2.1	 The	 kick-‐off	 workshop ...17	
2.2	 Project	 aims...17	
2.3	 Project	 planning ..19	
2.3.1	 The	 five	 development	 phases.. 19	
2.3.2	 Project	 scheduling... 20	

3	 Methodology... 21	
3.1	 Development	 and	 Project	 Management	 Methodology ...21	
3.1.1	 Technique	 #1:	 Timeboxing.. 21	
3.1.2	 Technique	 #2:	 The	 “Inception”	 and	 “Elaboration”	 project	 phases 22	
3.1.3	 Technique	 #3	 –	 Metaphors.. 23	
3.1.4	 Technique	 #4	 –	 Use	 cases... 23	
3.1.5	 Technique	 #5	 –	 iterative	 development .. 23	
3.1.6	 Technique	 #6	 –	 Information	 Radiators	 /	 Big	 Visible	 Charts.. 24	
3.1.7	 Technique	 #7	 –	 “Deliverables	 may	 change	 but	 timescales	 are	 fixed” 24	

3.2	 Selection	 of	 technologies...25	
4	 Results... 31	
4.1	 Inception	 phase ...31	
4.1.1	 Initial	 use	 cases .. 31	
4.1.2	 Initial	 use	 case	 diagrams ... 32	
4.1.3	 Initial	 conceptual	 modelling... 37	

4.2	 Elaboration	 phase...38	
4.2.1	 Updates	 to	 Inception	 artefacts	 generated	 by	 the	 developer	 during	 Elaboration 38	
4.2.2	 Updates	 to	 Inception	 artefacts	 generated	 by	 user	 feedback	 during	 Elaboration..... 40	
4.2.3	 Design	 modelling ... 42	
4.2.4	 Project	 backlog	 document... 43	

4.3	 Implementation	 details ..44	
4.3.1	 Modular	 approach	 via	 interfaces	 and	 Spring	 dependency	 injection 44	
4.3.2	 Final	 data	 model.. 45	
4.3.3	 Spring	 MVC... 47	
4.3.4	 Interaction	 of	 components	 in	 a	 WLab	 deployment .. 47	

4.4	 Testing...49	
4.4.1	 Suitability	 for	 purpose... 49	
4.4.2	 User	 testing	 /	 Sample	 labs... 49	

4.5	 Other	 project	 deliverables	 and	 outcomes..52	
4.5.1	 Source	 code	 /	 Subversion	 repository .. 52	
4.5.2	 User	 documentation... 52	
4.5.3	 WLab	 web	 presence.. 52	

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 3	 September	 2010	

4.5.4	 Dissemination	 at	 ALT-C	 2010 .. 52	
5	 Evaluation ... 53	
5.1	 Evaluation	 of	 WLab’s	 role	 in	 ICT	 teaching...53	
5.2	 Evaluation	 of	 technology	 outputs..54	
5.2.1	 The	 WLab	 application ... 54	
5.2.2	 Connectivity	 and	 security... 55	

5.3	 Evaluation	 of	 development	 and	 project	 management	 methodology56	
6	 Conclusion	 and	 future	 work... 59	

7	 References... 62	

Appendix	 A	 –	 Metaphors... 66	

Appendix	 B	 –	 Use	 cases ... 69	
Initial	 use	 cases ...69	
Updates	 to	 use	 cases	 generated	 during	 the	 Elaboration	 stage...74	
Appendix	 C	 –	 Screen	 Mockups... 76	
Screen	 mockups ..76	
Phase	 1... 76	
Phase	 2... 78	
Phase	 3... 79	
Phase	 4... 79	
Phase	 5... 81	
Modifications	 during	 the	 Elaboration	 period... 84	

Appendix	 D	 –	 Development	 logs	 and	 analysis	 of	 work	 done	 during	 sprints 85	
Sprint	 1 ...85	
Sprint	 2 ...89	
Sprint	 3 ...90	
Sprint	 4 ...91	
Sprints	 5	 and	 6...96	
Appendix	 E	 –	 End-‐to-‐end	 functionality	 test	 suite ... 99	

Appendix	 E	 –	 Poster	 presentation	 at	 ALT-‐C	 2010 ... 103	

Appendix	 F	 –	 Licencing .. 106	

Appendix	 G	 –	 XML	 Schema.. 108	

Appendix	 H	 –	 Resources	 from	 the	 “beginning	 programming	 in	 Java”	 example	 lab . 112	
Stage	 1 ..112	
Stage	 2 ..113	
Stage	 3 ..114	
Appendix	 I	 –	 User	 documentation ... 115	
Documentation	 for	 Tutors...116	
Documentation	 for	 System	 Administrators...131	
Documentation	 for	 Developers ...145	
Documentation	 for	 Students ..157	

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 4	 September	 2010	

List	 of	 figures	 and	 tables	

Figure 1 - the path of a lab exercise...15	
Figure 2 - the structure of a 3-stage lab..15	
Figure 3 - the evolution of ICT workshop delivery at Kingston University16	
Figure 4 – project schedule..20	
Figure 5 – sample timebox kick-off outline document ..21	
Figure 6 – the Unified Process... 22	
Figure 7 – the information radiator or “big visible chart” .. 24	
Figure 8 – no route to virtual machines .. 27	
Figure 9 – opening ports to every VM... 28	
Figure 10 – using an intermediate application to route to VMs ... 29	
Figure 11 – initial use case diagram for phase 1 .. 33	
Figure 12 – initial use case diagram for phase 2 ... 33	
Figure 13 – initial use case diagram for phase 3 ... 34	
Figure 14 – initial use case diagram for phase 4 ... 35	
Figure 15 – initial use case diagram for phase 5.. 36	
Figure 16 – initial conceptual model ... 37	
Figure 17 – use case diagram for phase 4, modified during Elaboration 38	
Figure 18 – use case diagram for phase 5, modified by the developer during Elaboration 39	
Figure 19 - Use case diagram for phase 5, modified as a result of user feedback during

Elaboration ..41	
Figure 20 – first cut data model .. 42	
Figure 21 - interaction of packages and interfaces .. 44	
Figure 22 – Final Data Model .. 46	
Figure 23 – WLab’s use of Spring MVC... 47	
Figure 24 - WLab deployment diagram...48	
Figure 25 - the images after each stage of the Paintbrush demo lab .. 49	
Figure 26 - "beginning programming using Java" - code segment for stage 1 50	
Figure 27 - "beginning programming using Java" - code segment for stage 2 50	
Figure 28 - "beginning programming using Java" - code segment for stage 3..............................51	
Figure 29 - Feature Driven Development ... 57	
Figure 30 - a roadmap for future work .. 59	
Figure 31 – initial post-login screen mockup .. 76	
Figure 32 – server at maximum capacity mockup .. 77	
Figure 33 – auto-suspended labs mockup... 77	
Figure 34 – the “in-lab” screen mockup .. 78	
Figure 35 – “booking a session” mockup... 78	
Figure 36 – the “in-lab” screen mockup .. 79	
Figure 37 - the “in-lab” screen mockup with resource pane collapsed ...80	
Figure 38 – create/edit lab screen mockup #1 .. 81	
Figure 39 – create/edit lab screen mockup #2.. 81	
Figure 40 – create/edit lab stage screen mockup ... 82	
Figure 41 - Create/edit tutor VM screen mockup.. 83	
Figure 42 - working in the tutor VM console .. 83	
Figure 43 - auto-suspended labs mockup (second iteration)..84	
Figure 44 - create/edit lab stage screen mockup (second iteration) ..84	
Figure 45 – initial post-login screen for phase 1 ... 85	
Figure 46 – post-login screen with VM started (phase 1) ... 85	
Figure 47 – connecting to a VM...86	
Figure 48 – waiting for the interregnum period to elapse ..86	
Figure 49 – system at capacity... 87	
Figure 50 – the booking screen ...88	
Figure 51 – navigating directly to a date..88	
Figure 52 – post-login screen (phase 3) ..89	
Figure 53 – system provisioning a lab for a student ...89	
Figure 54 – the “in-lab” console ..90	
Figure 55 – the main tutor menu..91	
Figure 56 – the tutor’s list of virtual machines ... 92	
Figure 57 – the tutor VM authoring console ... 92	
Figure 58 – editing tutor VM metadata... 93	

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 5	 September	 2010	

Figure 59 – choosing a lab stage to edit .. 93	
Figure 60 – editing a lab stage... 94	
Figure 61 – selecting a lab to edit .. 94	
Figure 62 – editing a lab .. 95	
Figure 63 – selecting a student to edit... 96	
Figure 64 – editing a student... 96	
Figure 65 – selecting a tutor to edit... 97	
Figure 66 – editing a tutor ... 97	
Figure 67 – student progress details by lab... 97	

Table 1 – the five phases of development ...19	
Table 2 - initial use cases ..31	
Table 3 – sub-functions derived from use cases ... 32	
Table 4 – project backlog document.. 43	
Table 5 – interregnum period examples.. 87	

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 6	 September	 2010	

Glossary	 of	 terms	 used	

The descriptions below explain the meaning of the terms with reference to the WLab system:

Active Directory Microsoft product that provides an electronic directory of individuals,

groups and other entities.
ActiveX A framework for creating software components that are independent of

a particular programming language. Only available on Microsoft
operating systems.

AD See Active Directory.
Administrative
privileges

User permissions that allow someone to perform administrative tasks on
a server, such as reconfiguring its services, changing its network
settings, adding additional software, etc.

Agile Software development methodologies that subscribe to the Agile
Manifesto [1]:

“We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan”

Backend VM In WLab, any virtual machine that exists on the virtualisation server.
They may have been created by a system administrator, using the tools
available outside of WLab, or they may be a Tutor VM.

Backlog document Technique used in Scrum that documents all deliverables/features. A
product backlog is a complete set of deliverables for the project; a Sprint
backlog is a subset used to document those to be delivered during a
given Sprint.

BDUF See Big Design Up Front.
Big Design Up Front Any software development methodology which subscribes to the

traditional approach whereby most, if not all design work is carried out
before any development takes place.

Crystal Clear Agile software development methodology written by Alistair Cockburn.
Cygwin Cygwin provides a Linux-like environment and suit of tools for Windows

operating systems. See www.cygwin.com.
DCOM Distributed Component Object Model. Provides a means of

communication between Windows-based networked computers.
Dependency
injection

A programming technique designed to reduce tight coupling and
interdependency between software components.

DMZ A “demilitarised zone”; in computer networking, an area of a network
that is exposed to the external internet but isolated from the internal
network, or allowed access to the internal network in only a highly
controlled fashion.

DSDM An Agile software development methodology. See www.dsdm.org.
eDirectory Novell’s solution that provides an electronic directory of individuals,

groups and other entities.
eXtreme
Programming

An Agile software development methodology.

Hyper-V Microsoft’s virtualisation solution.
IIS See Internet Information Services.
Internet Information
Services

Microsoft’s web server application.

J-Interop A Java library for sending DCOM requests.
Java Programming language by Sun Microsystems that uses a virtual

machine (the Java Virtual Machine or JVM) to execute applications
written for it. Java applications can thus run on any platform which has
a version of the JVM available.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 7	 September	 2010	

Java servlet A Java-based component for a web application. More formally, a class
that conforms to the Java servlet API.

JiBX A Java library that binds XML data to Java objects.
JSP Stands for JavaServer Pages, which generates Java servlets

dynamically using a simplified scripting language.
Jumpgate An application that accepts traffic at a network address and forwards it

to another. See http://jumpgate.sourceforge.net/.
JWBem Provides Java classes for accessing WMI.
JXPlorer An open source LDAP browser application written in Java. See

http://jxplorer.org/.
KUOLE Bespoke VLE written in-house at Kingston University.
Lab A WLab learning object that describes and provides the environment for

a practical workshop activity. Labs are divided into lab stages. The lab
stages, taken in order, describe the path one takes to complete the lab
activity and provide additional complementary learning content.

Lab stage A WLab object that describes a milestone point of a lab. They include a
Tutor VM that provides a working environment and starting point for
the activities of this part of the lab, and one or more resources.

LDAP The Lightweight Directory Access Protocol. Provides a protocol for
accessing and searching an electronic directory of individuals, groups
and other entities.

Learning object “Any digital resource that can be reused to support learning” [2]
Lubuntu A streamlined Linux distribution, based on Ubuntu, designed to work in

a small memory footprint using a minimum of system resources. See
www.lubuntu.net and www.ubuntu.com.

Metaphor A technique from eXtreme Programming where a software system is
described in a paragraph or two. “Entity metaphors” are established to
give a common terminology for key objects of a system. The purpose is
to establish a common lexicon across all project team members and
alleviate any potential misunderstandings between (for example)
developers and users.

MVC See Model-View-Controller.
Model-View-
Controller

A software design pattern which separates the general application and
domain logic from the presentation layer, which reduces coupling and
dependencies and encourages more modular code.

Mono Open source implementation of .NET.
MoSCoW System of prioritisation commonly used in software development where

each deliverable and/or feature is given one of four statuses, i.e. “Must
have”, “Should have”, “Could have”, “Won’t have”. Ordinarily, a project
is expected to deliver all M- and S-status items (although an Agile
project may well respond to change by altering priorities throughout).

.NET A software framework for the Windows family of operating systems that
provides a set of libraries for common programming problems, and a
virtual machine designed to execute programs written in the framework.

N-Learning Rote-based, memorisation of quantifiable facts. Defined by Max Boisot
in [3].

OER See Open Educational Resource.
Open educational
resource

A learning object or objects, made available under a distribution licence
that permits free distribution and use, often distributed via a publicly
accessible repository web site.

Prototype In the context of Agile software development, a deliverable usually
supplied at the end of a timebox which describes a new aspect of
functionality. In early stages, prototypes might take the form of screen
mockups, or a skeleton version of the application with only sample data
displayed. Later, they take the form of fully operational and working
software.

RDP Microsoft’s Remote Desktop Protocol. Used to deliver the console of a
computer to a remote terminal.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 8	 September	 2010	

Resource A link to a web page or other HTML content. Resources provide
additional learning context during a lab stage, and might be used to
give instructions to the student, references to other pertinent learning
material such as textbooks, lecture notes, etc.

Root privileges See administrative privileges.
S-Learning Learning based on flashes of insight and leaps of comprehension;

“practical”, intuitive learning such as that which takes place in a
workshop environment. See Max Boisot’s work [3].

Samba Solution for UNIX-based operating systems that provides Windows-
compatible network access.

SAN A storage area network, a means of attaching data storage devices to
servers over a network so that they appear to the operating system on
the server as locally attached devices. Several servers can access the
same SAN, meaning that SANs are often used in server clusters where
many servers must access the same storage/data.

Scrum An Agile software development methodology. See
www.scrumalliance.org.

Shovelware Content that has been uploaded to a VLE with little consideration as to
the pedagogic benefits offered by the VLE’s features, and that is often
meaningless when taken out of its original context (e.g. the PowerPoint
slides of a lecture minus the verbal component of the lecture itself).
Defined by Teo and Gay [4].

Spring (framework) An open-source application framework for Java which provides a
number of solutions for common programming issues, including
dependency injection and the MVC pattern.

Sprint A Scrum term meaning a period of development activity focused on a
defined set of goals.

SSH A network protocol that provides a secure channel between client and
server.

Student In WLab, an individual who will perform the activities implied by labs
for learning purposes.

Subversion A revision control system and repository, often used for software
projects.

SVN See Subversion.
Sysprep A tool, provided by Microsoft, designed to provide a “clean” instance of a

Microsoft operating system as if it had been only just installed.
System
administrator

An individual or group of individuals who is responsible for the
installation, configuration and subsequent support of the WLab system.

Terminal Services
Gateway

Microsoft’s solution for routing RDP traffic securely over the internet
and through firewalls.

TightVNC An implementation of VNC. See http://www.tightvnc.com.
Timeboxing Technique whereby tasks are divided into pre-defined, constant periods

of time. Each set period should result in a quantifiable set of outputs.
Tutor In WLab, an individual who will design labs.
Tutor VM In WLab, A virtual machine explicitly created by a tutor for use in a lab

stage. Tutor VMs are cloned from existing VMs.
Unified Process A software development methodology. Notable for the manner in which

it spreads out all of the discrete tasks of developing an application over
the period of the entire project (so, for example, development – or
“implementation” – will occur in varying degrees all the way through the
project).

Use cases A technique used in software development to analyse user requirements.
They describe a system’s behaviour as it responds to user requests, input
and/or activity.

Virtual Learning
Environment

An electronic solution that supports teaching and learning. VLEs usually
operate using web technologies and provide a variety of tools for
distributing learning content and facilitate communication and
collaboration between tutors and students.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 9	 September	 2010	

Virtual machine A complete simulation of a computer system, including its hardware,
software, user data and configuration state. The computer system might
be a simulation of a real, physical machine (e.g. the simulations of
desktop PCs provided by virtualisation solutions) or it might be a
machine that has no physical analogue, such as those used to provide
execution platform for programs written for them, e.g. the Common
Language Runtime in .NET [5] or the Java Virtual Machine [6]. In
WLab, a virtual machine that simulates a desktop PC is used to describe
an entire computer environment for a given lab stage.

Virtual PC A Microsoft product for the running virtual machines.
Virtualisation The technology of running and delivering virtual machines.
Virtualisation server A server which has the ability to run and deliver virtual machines to

users.
Virtualisation
solution

A product which runs on a server in order to make it a virtualisation
server. Examples are Hyper-V or the various products offered by
VMWare.

VLab A previous project at Kingston University that delivered a virtualised lab
environment.

VLE See virtual learning environment.
VM See virtual machine.
VMWare A software company and/or a suite of products by that company that

deliver virtualisation solutions. Also used as a catch all term to
mean “any one of the company’s virtualisation solutions”.

VNC Virtual Network Computing. An open-source solution, originally
written by staff at Olivetti and later at AT&T, which can deliver the
console of a computer to a remote terminal.

Windows
Management
Instrumentation

An interface for performing management tasks on Microsoft Windows
based computers through scripts and/or code.

WMI See Windows Management Instrumentation.
wsname A tool written by David Clarke (see

http://mystuff.clarke.co.nz/MyStuff/wsname.asp) that provides a
means of changing the computer name of a Windows-based operating
system via a script.

XML eXtensible Markup Language. Provides a standard means of encoding
documents and data in a text-based form that can easily be read by
software and (to some degree) by humans.

XML Schema Defines the structure, semantics and the data stored within an XML
document.

XP See eXtreme Programming. Or, alternatively, might refer to
Windows XP.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 10	 September	 2010	

Abstract	

When teaching ICT subjects, active learning is a crucial component: students must have the
opportunity to engage in hands-on workshops to be able to put what they learn into practice.
Delivering these workshops to distance learning students is problematic in that they do not have
access to institutional equipment and thus the requisite computer environment may not be
available to them. Even when delivering workshops to students on-campus, issues may arise.
Institutional equipment is usually configured to a generic “one size fits all” template designed
for simple office-type tasks. This may be ill suited to the needs of ICT teaching, particularly for
advanced courses where students may also need “root” or administrative access to servers.

Virtualisation is frequently used to overcome these issues, and allows for the delivery of a
simulated computer environment to students either on- or off-campus without the difficulties
involved in modifying “real” institutional equipment. Several projects implement such
simulated environments for ICT teaching; however, thus far such projects have been very
narrow in scope, providing only for the needs of a specific domain, e.g. IT security. Additionally,
they fail to avail themselves of the pedagogic opportunities inherent in the characteristics of
virtual machines.

WLab introduces a new approach to teaching via virtualisation for ICT. At its core is an
innovative composite learning object. A lab is divided into a series of stages. Each stage
contains a virtual machine state, and one or more links to static learning content objects
(resources). These stages can be considered milestone points along the student’s activity path
through an exercise. The virtual machine in each stage provides both the working environment
and the initial starting point for the activities of the stage. The resources provide a learning
context, and link the practical aspect of the lab stage with the teaching goals of the activity, by
referencing other appropriate learning materials, previous workshop stages, etc. Each stage
builds on and introduces new techniques and learning content.

A hybrid approach that borrows techniques from several different Agile methodologies was used
in order to accommodate the needs of a one-developer project. Open technologies were used
during development wherever possible to maximise accessibility and minimise vendor lock-in.
The result is a cross-platform web application that both delivers the composite learning object
to students, and provides a user-friendly authoring environment for tutors.

The logistical and pedagogic advantages of such a system are significant. Practical workshops
for ICT courses are liberated from the limitations imposed by distance, scheduling and outdated
facilities. Students can quickly contrast and compare their work with either a past or future
stage, a learning technique not easily replicated in a conventional on-campus workshop
scenario. Workshops can be distributed to other tutors and/or institutions in a fully self-
contained form. The concept of an ICT practical workshop exercise as a complete, portable open
educational resource is now a reality.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 11	 September	 2010	

Acknowledgements	

The author would like to extend profound gratitude to the following people:

David Livingstone
for his support throughout not only this work, but the entire MSc programme

Luke Hebbes
for his support throughout this work, and for providing an alternative technical perspective

Graham Alsop
for assistance in negotiating the world of academia, and pointers on pedagogy

Adam Hobbs and all of the CISM IT support staff at KU
for going above and beyond to provide technical resources and assistance

Miroslav Novak
for his kind understanding during the family emergency that delayed this work

and most importantly

Jean and Bob Neve
without whose support and love it would have been absolutely impossible for the author to
successfully undertake an MSc programme

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 12	 September	 2010	

1 Introduction	 and	 background	

1.1 Why	 electronic	 delivery	 of	 ICT	 courses	 is	 problematic	

In many academic environments, virtual learning environments (VLEs) provide an electronic
means of delivering handout-style learning content1 to students, e.g. PDFs, Word documents,
HTML pages etc. Many VLEs provide interactive facilities such as forums, instant messaging,
wikis, and so on; the intent is to provide an electronic analogue of the usual two-way student-
tutor dynamic, where a student increases their understanding of the static material delivered by
posing questions. Additionally, VLEs are often used to deliver learning content to distance-
learning students.

Unfortunately, VLEs are rarely used to best effect, with many tutors using the VLE solely as a
means of distributing lecture notes. Others feel obligated to populate their area of the VLE with
something even if they aren’t comfortable with the technology, and simply refactor existing
static content with little or no consideration of any pedagogic advantages offered by the software
– Teo and Gay refer to this as “shovelware” [4]. Often, such shovelware takes the form of
PointPoint slides originally intended to complement the verbal element delivered by the tutor
during a lecture. However, Williams’ point that a learning object only has useful meaning if
delivered in an appropriate context [7] is particularly pertinent. Shorn of the verbal component
the slides are less useful and in extreme cases may even be meaningless. (This issue is discussed
further in A General Approach to E-Learning for ICT Students [8].)

Even if a tutor is able to completely approximate a lecture via a VLE – perhaps by including not
only PowerPoint slides, but also an audio component or other replacement for the spoken word
aspect – it would not overcome the fundamental shortcomings of lecturing as a teaching
method. It has been established that students’ attention spans during lectures waver after a
relatively short time [9]. Most best practice guides now advocate the inclusion of “active
learning”, defined by Bonwell and Eison [10] as “instructional activities involving students in
doing things and thinking about what they are doing” (our emphasis).

Boisot distinguishes between two types of learning, Neoclassical or Newtonian learning (N-
Learning) and Schumpterian learning (S-Learning) [3]. Mellor and Mellor’s simplification of
Boiset’s wordy discourse summarises by stating that N-Learning consists of rote-based
memorisation of quantifiable facts, whereas S-Learning involves flashes of insight and leaps of
comprehension [11]. Both kinds of learning are important, but S-Learning is key in practical
subjects like ICT if a student is to be able to successfully apply the materials being taught to
create new, original pieces of work. Lecture style teaching conveys N-Learning easily, but is less
suitable at promoting S-Learning where other approaches might be more appropriate.

One such approach is to use workshops, where a student is set a practical activity designed to
exercise the skills they have acquired. Unfortunately, with respect to ICT courses, VLEs cannot
deliver an analogue of an on-site workshop where a student would sit at an institutional
computer in a lab and attempt a practical task. This presents a serious problem for distance
learning students. In many cases it is assumed that such students have access to IT equipment,
and that this equipment can be configured according to the needs of the workshop exercise.
These assumptions can lead to support issues that are highly distracting for the student. If the
student does not possess or cannot acquire suitable equipment, they may miss essential
components of the course.

Beyond those posed by distance learning, ICT also presents other problems when it comes to
running workshops for more advanced courses. In many such cases, administrative or “root”
level privileges on a server are required in order for a student to practice the skills being taught.
Students cannot be given such privileges on a production server, and it would be infeasible to
allocate each student a server of their own.

Gaspar et al [12] describes the creation of isolated labs containing workstations with full
administrative privileges, so as to allow students the root-level access they need for their studies
without impacting the rest of the campus network. Such an approach requires significant

1	 Such	 learning	 content	 will	 be	 referred	 to	 as	 “static”	 content	 from	 henceforth.	

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 13	 September	 2010	

resources. If such a lab were established as a permanent fixture at an institution, it would mean
that the facilities go unused and thus wasted when such courses are not being run. Few
institutions would tolerate or indeed, be able to afford such waste. The alternative is that an
existing lab room is used. Prior to the course, the laboratory would need to be isolated from the
institutional network, and all its workstations reconfigured. At the conclusion of the course, a
similar exercise would be required to reverse the changes. This would require considerable staff
time, effort and resources.

The ideal solution to these issues would be a VLE that, alongside the other learning content
being delivered to the student, provides a simulation of a workstation or server. Such a
simulation would be configurable to suit the needs of a particular workshop exercise without
affecting “real” equipment or facilities. Assuming that this was being delivered via a standard
web-browser, as with existing VLEs, this would overcome both on-site logistical issues and those
presented by distance learning students. While no such idealised VLE yet exists, many academic
institutions have made use of virtualisation to provide these simulations.

1.2 Introducing	 virtualisation	

There is a perception that virtualisation is a relatively "new" technology. However, as far back as
1974, Popek and Goldberg defined a virtual machine (or VM) as "an efficient, isolated duplicate
of the real machine” [13]. Their subsequent assertions will be familiar to anyone familiar with
modern virtualisation: the environment provided should be "essentially identical" to the original
machine and programs running in the VM should suffer only minor performance degradation.
Such principles had already been implemented a decade before [14] in the form of the IBM
S/360-67 and the CP-40. At the time, running concurrent applications using time-sharing was
beginning to gain momentum, but the S/360-67 was the first hardware to provide a true,
virtualised environment.

Shortly after the turn of the century VMWare released the first versions of their server-side
products [15]. These enabled organisations to reduce the amount of physical servers required to
run their infrastructure by allowing a single piece of hardware to run multiple virtual "servers".
Competitor products to VMWare opened the marketplace further, and it is now rare to find an
organisation with a large IT investment that does not make some use of virtualisation. This
would seem to be supported by the heavy growth in sales of virtualisation solutions up until
2008 [16] at which point sales began levelling out. (One might surmise, as server virtualisation
became more commonplace, with a larger install base, the opportunities represented by new
sales were reduced to a minimum, and subsequent sales were comprised primarily of upgrades
for existing customers).

1.3 Virtualisation	 in	 education	

The education sector is no exception to these trends, and a white paper by IBM [17] describes
the growth of virtualisation in education. However, it is fair to say that the case studies cited are
only indirectly related to pedagogy. Of more interest are projects that directly use virtualisation
to deliver learning content, and that move towards the proposed idealised VLE for ICT.

In 2002, with virtualisation on desktop PCs still in its relative infancy, McEwan discussed how
Christchurch Polytechnic Institute of Technology was able to use a combination of products to
deliver operating system- and network-related subjects [18]. VMWare Workstation was used for
the OS courses, where the need was simply to be able to quickly and easily switch between
different OSes. The solution for the networking courses was more novel, where User Mode
Linux or uml2 [19] was used to create a virtual network. This network never actually existed; it
was comprised of virtual hosts running on the same physical hardware. However, it allowed a
lecturer to demonstrate the concepts to students, and allowed students to experiment with
various aspects of networking, such as subnetting, routing, firewalls and so on. Its virtual nature
also meant that it did not run the risk of causing damage to the production network, through
error or malice on a student (or lecturer's!) part. In 2006, Bullers et al used a similar model to

2	 The	 acronym	 for	 User	 Mode	 Linux	 is	 not	 capitalised	 when	 written,	 apparently	 to	 avoid	 confusion	 with	 the	 Unified	
Modelling	 Language.	

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 14	 September	 2010	

McEwan to deliver “three advanced courses covering system and network administration,
information security and database administration” [20].

One commonality between Bullers’ and McEwan’s work is that in both instances, the
virtualisation products were used solely as a means of solving one of the logistical problems in
advanced ICT pedagogy, i.e. that it is both physically and financially impractical to give every
student their own server and workstation machines. Xen Worlds [21] has a similar
infrastructural focus. In contrast, V-NetLab [22] takes a step further forward. A web interface is
provided from which students can create and connect to a virtual network comprised of several
virtual machines. The VMs that comprise the virtual network are created on demand from a
base image, prepared in advance by the tutor.

1.4 Virtual	 machines	 as	 learning	 objects	

V-NetLab’s base VM images might be considered a learning object in their own right. Consider:
these images contain information, both overtly in the form of discrete files and folders stored
within the VM’s virtual hard disk, and also more subtly in the form of the VM’s configuration,
the operating system environment and so on. Wiley defines a learning object as “any digital
resource that can be reused to support learning” [2]. V-NetLab’s base VM images certainly fit
this definition.

Kingston University has used virtualisation as a vehicle for delivering such learning objects for
some years now. Initially, a McEwan-like approach was used where virtual machines were
prepared in advance of a course, and Microsoft Virtual PC used to run them. A student could use
an institutional machine, or take the VM image home on an external hard drive and install and
run Virtual PC on their own equipment. Later, the VLab project centralised the VM learning
objects onto a Hyper-V server and provided a student-facing web interface. Students were
allocated a VM on this server, and a web interface allowed them to stop and start their VM.
Connectivity both on campus and at remote sites was provided via Microsoft Terminal Services
gateway. VLab provided no ability for VMs to be created on demand, meaning tutors were
required to both design an initial exemplar image then manually create clones of it for each
student on the course. However, as with V-NetLab, these exemplar images can be considered
learning objects.

As noted previously, a learning object must be presented in an appropriate context in order to
be meaningful. Virtual machine-based learning objects are no exception. With regard to VLab
this will be illustrated by way of an example, the Electronic Commerce Technologies MSc
module delivered at Kingston University in December 2008. Via VLab, each student was
provided with a virtual machine containing Windows Server 2008, IIS, MS SQL Server and
Visual Studio. The context of the VM was established by conventional lectures in combination
with printed handouts (which were also available in electronic form). During a workshop
session, the handout described the practical activities that the student was expected to engage in
within the VM. These activities were designed to reinforce the learning context delivered by
previous lectures.

The SOFTICE project leverages virtualisation to deliver computer security courses [12, 22]. As is
the case with VLab, its authors acknowledge the importance of accompanying static resources if
the virtualised environment is to have any meaning as a learning object. On SOFTICE’s project
wiki there is an area devoted to “pedagogical resources” [24]; these resources take the form of
“worksheet”-type documents.

In both the case of VLab and SOFTICE the association between virtual machine and static
learning resources is manual. The current use of VLab assumes that a student will be given or
told where to find these resources – the VLab system itself does not provide any link or
reference, although it would be possible to include the materials within a VLab virtual machine
or host them on the VLab web server itself. Similarly, with SOFTICE, a student wishing to use
the published “pedagogical resources” must use a separate web browser to locate and view them.
In both cases, the solution falls short of the ideal outlined previously, where the VLE itself would
deliver both the practical workshop environment and the static learning materials side-by-side.

Within their target subject area (i.e. IT security) the SOFTICE team have engaged in
considerable discussion about the pedagogic advantages of virtual machines as learning objects

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 15	 September	 2010	

[12, 22]. In the latter source, they introduce the concept of dividing a lab assignment into steps:
a “briefing” step establishes a base level of knowledge, an “exercises” step defines what is
expected of the student, and a “solved” step gives exemplars. SOFTICE’s lab assignment is thus
a collection of these steps along with complementary “pedagogic resources” as exemplified on
their wiki. A single step in isolation – which one assumes includes a pre-defined virtual machine
state, although this is not explicitly stated – is meaningless without the accompanying pedagogic
resource that guides the student in its use and places it into context. Indeed, a step further
might be to consider the lab assignment – i.e. the collection of “briefing”, “exercises” and
“solved” steps – as a single learning object.

One shortcoming in this approach is that it does not consider progression. The steps are
presented as faits accomplis that are only indirectly related. For example, [22] describes the
“solved” step as “an example of the kind of work the student is expected to do”. Thus it is not the
solution to the “exercises” step suggested by its name; rather it provides exemplars of similar
work intended to direct and give students a clue to the right direction. Referring to these as
“steps” is something of a misnomer, as they do not represent a logical progression of a learning
task from start to finish.

An alternative approach would thus be to make the individual “steps” precisely that – i.e. steps
one takes when performing a task from start to finish. The benefit of this approach is that the
resulting learning object effectively becomes a “roadmap” that represents the path taken by an
expert user in executing the activity. A novice can follow this roadmap and in doing so,
assimilate the tacit knowledge inherent in the expert’s execution of the activity.

1.5 Introducing	 WLab:	 a	 new	 paradigm	 for	 a	 virtualised	 ICT	 lab	 environment	

In [8] a composite learning object was described that would – among other things – contain
several discrete virtual machine states. These states or “stages” taken in a particular order,
would describe a path that a student would take in order to complete a lab activity:

Figure 1 - the path of a lab exercise

Thus, the idealised VLE for ICT learning postulated previously can now be extended to one that
not only presents a simulation of a practical environment alongside its associated static learning
content, but one that implements this staged path through a lab exercise. Such a VLE would
implement a composite learning object as shown in Figure 2:

Figure 2 - the structure of a 3-stage lab

Here, a “lab” can be defined as any given workshop activity. This activity is comprised of
“stages” which contain a virtual machine and one or more “resources”. The virtual machine
would be pre-configured to provide the starting point for the student to begin the practical work
required of them for this stage of the exercise. The “resources” are accompanying, context-
setting learning content, provided via PDFs, Word documents and/or links to HTML content.
The differences between the stages describe additional learning content – in many cases, this

Lab
Start

Stage
#1

Stage
#2

Stage
#3

Lab
End

Lab
Lab Stage 1

Virtual
Machine

Resource
Resource
Resource

Lab Stage 2
VIrtual

Machine

Resource
Resource
Resource

Lab Stage 3
Virtual

Machine

Resource
Resource
Resource

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 16	 September	 2010	

will be the path one takes in order to navigate the activity from start to finish. Nothing precludes
adopting a non-deterministic approach when designing such labs, where one stage’s end point is
not necessarily the next stage’s start point (a la SOFTICE’s approach). However, the advantage
of the deterministic flow described in Figure 1 is that it simulates a real-world task more closely.
This means that the tutor could author a lab by simply doing the task, and, from the student’s
perspective, it provides both a complete exemplar and interactive step-by-step guide to
achieving a desired result.

The WLab3 project will implement such a composite learning object, providing the requisite
tools for tutors to author them, and for their delivery to students. This represents a natural
evolution of the previous work at Kingston University in ICT workshop delivery, incorporating
the lessons learned from past work as a foundation for what follows. Thus while in many
respects this is a brand new project, it also represents a continuance of previous work in ICT
workshop delivery. This is illustrated in Figure 3:

Figure 3 - the evolution of ICT workshop delivery at Kingston University

3	 WLab	 –	 derived	 from	 V++Lab	 –	 i.e.	 the	 next	 incremental	 step!	

On-site lab
facilities/students'
own equipment

Virtual machine
images run via

Virtual PC

Virtual machine
images delivered

via VLab and
Terminal Services

Gateway

WLab

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 17	 September	 2010	

2 Project	 preparation	

2.1 The	 kick-‐off	 workshop	

A Kick-Off Workshop was held on Thursday 6th May, with the following individuals present:

Luke Hebbes – user and product owner
David Livingstone – user and project supervisor
Paul Neve – developer and project manager

The concept of the staged lab exercise was discussed in depth and agreed to be highly desirable.

A number of technical shortcomings were identified with the existing VLab solution. Firstly,
creating virtual machines is a manual process; for a class of 20 students, 20 VMs must be
manually configured. Tools such as Microsoft System Center Virtual Machine Manager can
simplify this process [25], but it is still a non-trivial task. Secondly, VLab makes use of
predominantly Microsoft technologies; Hyper-V is used as the virtualisation backend, the
student-facing web interface that allows them to start and suspend their lab sessions is a .NET
application hosted on IIS, and the students’ VMs are delivered via Microsoft Terminal Services
Gateway. This combination provides a means for both remote and on-campus students to access
their lab sessions – but only if they are running a Windows operating system. This presents a
serious accessibility issue.

On the current VLab system, in order to minimise server load, students are prevented from
starting their VMs if the number in use by other students exceeds a defined maximum.
Additionally, so as to prevent students from “hogging” the system, they are given a limited
duration during which their virtual machine may be run. After this period, their virtual machine
is automatically suspended and the student cannot restart it until a set time has elapsed.
However, this means that students may have difficulties logging in at busy times. Consequently,
the ability for a student to schedule a guaranteed period of lab time via some form of booking
system was seen as key.

The original intent in the project proposal was to integrate with the KUOLE VLE, developed in-
house at Kingston University. However, at the kick-off workshop this was de-scoped. It was
agreed that introducing dependencies on third parties and other projects introduced an
unpredictable complication, especially as KUOLE is now a PhD project. Instead, a simple non-
functional requirement was introduced: WLab data should be stored as simple XML according
to a defined schema. This will make any future integration a very simple matter; the KUOLE
developer can simply utilise the schema to immediately start reading and writing WLab data.

2.2 Project	 aims	

Based on these discussions during the kick-off workshop, the following aims were defined:

• Implement the composite learning object previously described, i.e:
o A lab exercise contains several stages
o Each stage contains a virtual machine state which provides the practical

environment of this stage of the lab exercise
o Each stage also contains associated static learning resources intended to

complement and place the practical environment into an appropriate context
• Provide for automatic provisioning of virtual machines to students
• Provide a web-based application that delivers these learning objects to students
• Provide a web-based application that allows tutors to author these learning objects.
• Provide a facility for students to book a time slot where access to the system is

guaranteed
• Provide a solution that is cross platform – both in terms of client access, and in terms of

the server side application itself.

Another point to consider is the importance of providing a solution that is genuinely usable in
the real world, and that is accessible to the uninitiated. Much of the literature describing other
virtual lab environments has targeted the research community rather than a potential user

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 18	 September	 2010	

community, and as a result most projects have struggled to acquire a user base outside of their
authoring institutions. SOFTICE is an exception in that their project wiki [24] does provide
material targeted at individuals wishing to actually use the solution (e.g. as installation details,
virtual machine images and so on). However, the relative inactivity on the SOFTICE wiki (the
last updates took place in November 2008) suggests that it has fallen into disuse.

Thus, the final aim of the project will be to:

• Provide instructional materials targeted at users wishing to deploy and use the system.
The following categories of users can be anticipated:

o Students
o Tutors
o System Administrators
o Developers

• Provide an on-line presence for the project which can serve as a foundation for a user
future community for collaboration and knowledge sharing.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 19	 September	 2010	

2.3 Project	 planning	

2.3.1 The	 five	 development	 phases	

At the initial kick-off meeting, it was agreed to take a five-phase approach to development. Each
individual phase provides a complete, coherent solution in its own right that improves upon
what existed before it, and provides institutional value. The ideal is to implement all of the
phases before the end of the project. However, if this is not possible, the staged approach will
still produce worthwhile ouputs.

The proposed development phases are as follows:

Phase 1 Reverse engineer current VLab functionality using open technologies
Phase 2 Implement scheduling/booking functions
Phase 3 Dynamic virtual machine creation:

• When a student logs in and attempts to undertake a lab exercise, if
required, the system will automatically create a new virtual machine for
them from a “base” image.

Phase 4 Introduce the composite learning object:
• Introduce the concept of a “lab” that consists of multiple virtual machine

objects with complementary URI resources
• Enhance student-facing UI to allow comparison and synchronisation (i.e.

compare their current work with the exemplar VM state, or sync
themselves with the exemplar if they are stuck)

Phase 5 Management interface for tutors:
• Additional web interface to be created to allow tutors/administrators to

create lab exercises via a user-friendly web-based UI (the assumption is
that, up until this point, such authoring will have been done via the
virtualisation backend’s own tools, and by editing appropriate XML files
to create the WLab objects required)

Table 1 – the five phases of development

It should be noted that the above describes only the phases anticipated for this specific project
and period of development effort. Future work may go beyond these phases.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 20	 September	 2010	

2.3.2 Project	 scheduling	

There are a number of external dates and deadlines that influence project planning:

1st July Interim report due
6th July Poster Presentation
23rd September Final due date

Additionally, a proposal for a poster presentation has been submitted and accepted for the ALT-
C 2010 Conference (see http://www.alt.ac.uk/altc2010/). This introduces another date:

7th-9th September ALT-C

The project schedule is shown in Figure 4; this has been derived from the requirements of the
hybrid agile approach (see 3.1), the deliverables required for the dates outlined above, and the
outputs of the project kick-off workshop.

Figure 4 – project schedule

31st May-4th June
Research Week
(revise Spring,

literature review)
7th-11th Sprint #1 14th-18th Sprint #2 21st-25th Sprint #3 28th-30th

Documentation

10th-14th
Inception

17th-21st
Elaboration #1

24th-28th
Elaboration #2

1st
July
Int.

Rep.
due

12th-16th Sprint #4 19th-23rd Sprint #5
26th-30th

Contingency - Sprint
#6

2nd-6th
Write Up #1

9th-13th
Write Up #2

16th-20th
Write Up #3

23th-27th Write Up
#4 - first complete

draft

31st Aug-3rd Sep
ALT-C preparation

6th-10th
ALT-C

13th-17th
Final Version

(including ALT-C
materials)

May

June

July

August

September

5th-6th
Poster

Present.

7-9th
Leave

23rd
Sep
THE
END

WLab - Project Plan / Expected Timeboxes
(as of 6th May)

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 21	 September	 2010	

3 Methodology	

3.1 Development	 and	 Project	 Management	 Methodology	

The team working on this project is very small – i.e. one developer, two users. The developer
will be expected to handle most if not all project management and the users will fulfil what in
formal methodologies would be considered business-level roles, e.g. product owner.

This small team would seem to lend itself to an agile approach, and there is a wealth of literature
that suggests that agile methodologies work best with small teams, although perhaps not quite
as small as this. Alistair Cockburn’s Crystal Clear suggests a team size of 8 or less, “four of which
probably have to be distinct people [26]. Scrum defines three distinct roles, “but the team in
Scrum is seven, plus or minus two people” [27]. DSDM Atern is even more heavyweight, with a
raft of artefacts suggested by its product set [28] and 12 distinct roles [29]. While a single
individual could conceivably and is often expected to perform several roles in such
methodologies, no established Agile methodology seems precisely suited to such a minimally-
staffed project.

The intention is therefore to cherry-pick various techniques and principles from different
approaches, adapting them where necessary for the purposes of this project.

3.1.1 Technique	 #1:	 Timeboxing	 (from	 DSDM	 Atern)	 	

Atern’s concept of timeboxing will be crucial as a means of task and time management [30]
There are 19 weeks available to the project; this is a fixed, immutable period that cannot be
altered. This time will therefore be divided into 19 week-length timeboxes. Not all of these
timeboxes will be devoted to actual software development; indeed, it is anticipated that a larger
number will be concerned with what might be referred to the more “prosaic” aspects of an MSc
dissertation project.

Atern indicates that a timebox should be divided into five stages – kick-off, investigation,
refinement, consolidation and close out. While the formality of such clearly defined stages
within the timebox is probably excessive here, given the single developer involved, the
expectation is that analogues of the kick-off and close-out stages will occur. At the start of
each week, while nothing so formal as a meeting will occur, an hour or so will be devoted to
producing an outline document detailing the expected week’s tasks and deliverables. An
example is shown in Figure 5. Similarly, the final activity of the week will be to evaluate the
deliverables actually produced during the timebox and compare them against those anticipated
in the outline document. This approximates the formal acceptances mandated by Atern.

Figure 5 – sample timebox kick-off outline document

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 22	 September	 2010	

3.1.2 Technique	 #2:	 The	 “Inception”	 and	 “Elaboration”	 project	 phases	 (from	 the	 Unified	
Process)	

The Unified Process – regardless of which flavour is chosen – names the initial project phases
inception and elaboration [31, 32]. It also eschews the traditional “Big Design Up Front”
(BDUF) paradigm and suggests that the activities of software development straddle an entire
project. Figure 6, taken from [32], illustrates this; for example, some system implementation
activity takes place as early as the inception phase, and similarly, system design continues right
up until the end of the project (albeit in smaller amounts).

Figure 6 – the Unified Process

Nevertheless, the lion’s share of modelling and design activity takes place in the early stages of
the project. The intent is to adopt a similar approach here. The first timebox will be devoted to
the inception phase, and the subsequent two timeboxes the elaboration phase. During the
inception phase the following activities are expected:

• Finalise methodology
• Document use cases, based on kick-off workshop and other available information. These

will be prioritised according to the MoSCoW system [33, 34].
• Produce conceptual model. This will consist of a skeleton class diagram and use case

diagrams.

and during elaboration:

• Produce first “prototype” in the form of mockup screenshots
• Produce first draft of design model (i.e. complete class diagram with all attributes and

relationships, at least for the data model)
• Produce product backlog document

The “prototype” and design model will each have two iterations, allowing the users to influence
proceedings correct any early misconceptions. A product backlog document a la Scrum [27] will
be prepared during the final days of the elaboration stage,; this will be used later to help order
the development cycle.

It may appear that a large amount of design is being done up front, drifting very close to the
dreaded BDUF. However, it should be noted that the design model that emerges from the
elaboration phase will be used to create an XML schema, itself an implementation artefact.
Similarly, the “prototype” of mockup screenshots is a form of implementation, establishing
parameters for the final application’s UI. Such mockups are recommended as worthwhile
artefacts in a number of different Agile methodologies [35, 36]. Therefore the approach does
indeed fit the overlapping activities mandated by the Unified Process.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 23	 September	 2010	

3.1.3 Technique	 #3	 –	 Metaphors	 (from	 Xtreme	 Programming)	

XP projects utilise a technique which Beck describes as a “single overarching metaphor” [37]. In
this project, this will take the form of several paragraphs of descriptive prose with certain terms
– “entity metaphors” – highlighted in bold. The intention behind such metaphors is to define a
common language and overview of the application that can be understood by all project
participants regardless of their technical inclinations. The key outcome of this technique is to
ensure that any terminology used is consistent across the project, and that all project team
member understand a given term as meaning the same thing. Technical entities of the project
should take their names and relationships directly from the metaphor, so as to ensure that the
eventual system architecture will reflect the metaphor and thus match the users’ understanding
of the ideal end result.

Ordinarily, a project would have only a single metaphor. In this project, given the phased
approach to development and the fact that the application’s functions will change considerably
with each passing phase, the intent is to have a distinct metaphor for each development phase.
The final version of these metaphors can be found in Appendix A.

3.1.4 Technique	 #4	 –	 Use	 cases	

Use cases as a tool for requirements analysis is commonplace in Agile methods. However, the
manner in which one might compose a user case varies greatly. In Writing Effective Use-Cases
[38] Cockburn notes the difference between “fully dressed” use cases and more casual
approaches. While doing so, he warns against the dangers inherent in over-elaborating and
imposing too much formality on the use case composition process. In his own Agile
methodology, Crystal Clear, Cockburn takes his own advice and uses the casual, two paragraph
use case format [39].

In this project, the original intent was to use Crystal Clear-style two paragraph use cases, but
early on in the Inception phase it became clear that the results lacked clarity. Thus, the final
template used employs indented series of bullet points to describe processes and behaviour. The
intent was to avoid the over-formality of Cockburn’s “fully dressed” use cases, avoid the
“wooliness” of prosaic paragraph blocks, while still providing the same level of simplicity as
Cockburn’s “casual” template. Some aspects of fully dressed use cases will be used, where
appropriate – for example, to describe alternative process flows, error conditions and the like.

3.1.5 Technique	 #5	 –	 iterative	 development	

A core principle of Agile methods [27, 40, 41] is iterative development. The terminology differs
across methods, but the same basic process is entailed: developers work for brief periods of time
(e.g. a “sprint” in Scrum) at the end of which a prototype is delivered. The user community then
offers feedback on the prototype; this feedback in turn shapes the next period of development.
This means the software is subject to an evolution-like process, where over the course of the
iterations bugs and incorrectly designed functionality are “weeded out” until, at the end of the
cycle of iterations, a software artefact emerges that is very much in line with the users’ needs.

In order to distinguish a timebox where development will take place, the Scrum terminology
sprint will be used. In all, six of these are anticipated. The five stages of development outlined in
2.3.1 will therefore be the subject of one sprint each. A sixth sprint is allocated for contingency,
mop up, or possibly even further development beyond the core features that were prioritised M
or S in the MoSCoW system.

These development timeboxes or sprints will also introduce a number of Scrum-specific
techniques. As part of the Elaboration process, a product backlog will have been created from
the use cases. During the kick-off session of the timebox/sprint, a selection of items from the
product backlog will be used to compose a Sprint Backlog document. This will be influenced by
the priorities of the outstanding product backlog items. However, it will also be influenced by
the staged approach of development outlined in 2.3.1 and the need to provide a coherent feature
set at each stage.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 24	 September	 2010	

3.1.6 Technique	 #6	 –	 Information	 Radiators	 (from	 Cockburn)	 /	 Big	 Visible	 Charts	 (from	 XP)	

The idea of finding a prominent wall or walls in the area where a project team works and
covering it with copious project documentation is a recurring concept in Agile approaches.
Cockburn refers to this as an Information Radiator [42] and notes that they should be big, very
easy to see and show the reader “information that they care about”. XP also has a similar
concept in the shape of the Big Visible Chart, and Ron Jeffries gives a similar recommendation
in [43]: “chart what you care about, what you worry about, what you want other people to
know”.

In a project where a single person will conduct the majority of day-to-day activity, the inter-
personal communication aspect of an information radiator is less useful. However, self-
communication is important. The prominence of the information radiator which means
everything of importance is constantly in one’s visual field helps ensures that work and
deadlines stay on track.

Figure 7 shows the state of the information radiator at the end of the development cycle of the
project. Each week length timebox is represented by one A5 sheet. Post it notes – colour-coded
by duration – represent the tasks for the timebox. As a task is completed, it is crossed off.
Backlog documents [27] and other artefacts such as use cases are also placed on the radiator and
elements crossed off by hand as they are completed:

Figure 7 – the information radiator or “big visible chart”

3.1.7 Technique	 #7	 –	 “Deliverables	 may	 change	 but	 timescales	 are	 fixed”	

A key Agile concept is that while the target deliverables might evolve over a project lifecycle,
timescales may not [44, 45, 46]. This is inherent in the phased development approach. While
the objective is the completion of all five phases, one must be pragmatic and anticipate that the
possibility of difficulties or obstacles that make that impossible. Consequently, it is expected
that the list of project deliverables will evolve. One or more project phases may need to be re-
classified as a MoSCoW “won’t have” and relegated to the list for future post-project work.
Equally, on the other side of the spectrum, new requirements may be introduced or existing
ones altered. However, the common factor in all of this is that the overall timescale is fixed, and
final delivery will take place at a set, immutable date.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 25	 September	 2010	

3.2 Selection	 of	 technologies	

For the most part, the technologies used in this project were dictated by non-functional
requirements. The following non-functional requirements have already been either explicitly
articulated or implied:

• The system must be accessible from both Microsoft and non-Microsoft clients
• The system must be able to present a virtual machine console within a web browser,

alongside other content4
• System data must be stored as XML files, conforming to a clearly defined schema

The following non-functional requirements are dictated either by functionality in the existing
VLab system, the manner in which it is currently used, or by the infrastructure available at
Kingston University:

• Microsoft Hyper-V is the target virtualisation backend
• The system must be accessible both within the institution and remotely
• Authentication will be done against an LDAP-based directory service, which may or may

not be Microsoft Active Directory
• The system must be able to deliver both Windows and Linux virtual machines

The following is seen as highly desirable by the author:

• The server-side application must not be restricted to a specific server operating system

Each of these non-functional requirements was analysed; the results dictated the suite of
technologies that would be used to create WLab.

The	 system	 must	 not	 be	 restricted	 to	 a	 specific	 server	 platform	

The current VLab solution is written in ASP.NET, which generally speaking demands a
Microsoft platform. One might argue that the open source implementation of .NET, Mono [47]
invalidates this assertion; however, one would anticipate issues were Mono used to eliminate
the Microsoft specificity at the server side. Almost certainly this project will make use of third
party libraries and other open source and/or public domain resources. If Mono were used there
is a risk of such libraries malfunctioning, given the likely assumption by their authors’ that their
work will be running on “real” .NET. One of the developers of Mono cites only a 50% chance
that existing .NET code will run without refactoring [48]. The Free Software Foundation has
also warned that, from a legal perspective, Mono might not actually be “safe” from Microsoft
[49]. The conclusion is that Mono is not an advisable option for this project.

Consequently, an early decision has been made to use Java, specifically Java Servlets and JSP in
conjunction with the Spring framework [50]. Java is inherently cross platform by design. The
Spring framework’s Model/View/Controller module for web applications will help encourage an
efficient application design. Additionally, Spring’s dependency injection approach will make it
easy for any future work to extend the application. (For example, one would be able to write
support for an alternative virtualisation backend and then use it in the application simply by
changing an XML file – no change to core code would be required).
	
Ensuring	 cross-‐platform	 client	 access	 /	 presenting	 the	 VM	 console	 in	 a	 web	 browser	
alongside	 other	 content	

	 	
The existing VLab system uses Terminal Services Gateway (TSG) to connect clients to virtual
machines. TSG uses an ActiveX control to call Microsft’s Remote Desktop client, which creates
the Windows-only client restrictions mentioned previously.

4	 If	 not,	 it	 would	 be	 impossible	 to	 provide	 the	 integrated	 environment	 where	 the	 practical	 part	 of	 an	 ICT	 lab	 exercise	
can	 be	 displayed	 side-‐by-‐side	 with	 the	 associated	 static	 learning	 content.	

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 26	 September	 2010	

One solution would be to use an open source RDP client, such as ProperJavaRDP [51]. This can
be delivered as a Java applet, so would address any client-side platform issues. Unfortunately,
ProperJavaRDP displays the remote console as a separate window rather than as an applet
embedded in the web page. Examination of the source code shows that it would not be trivial to
alter this behaviour; the applet mode appears to have been an afterthought in that it simply
provides an entry point to create and display the same JFrame used in the desktop mode.

The intention is therefore to use VNC, which is available on a multitude of platforms in both
server and client forms [52]. Each virtual machine will require a VNC server installed. Students
will connect to virtual machines’ VNC servers via the TightVNC [53] Java applet; the TightVNC
flavour of VNC has been chosen as a client because the “tight” encoding is common, reasonably
fast and compatible with many other modern implementations of VNC, and the source code for
the applet is open source and thus modifiable. The applet can also be embedded in a browser
page.

The simple web aspect of the client-facing side of the application should not present any cross-
platform difficulties, although inevitably there will be browser-specific quirks to overcome.

System	 data	 must	 be	 stored	 as	 XML	 files,	 conforming	 to	 a	 clearly	 defined	 schema	

There are many methods of manipulating XML in Java. For the purposes of this project, the
most relevant are those that allow for the abstraction of XML elements into Java objects, such as
the Java Architecture for XML Binding (JAXB). JAXB allows a developer to manipulate Java
objects in a familiar fashion using getter and setter methods, and have the work of translating
this into XML done by the binding library [54].

However JiBX not only provides similar features [55] but also allows one to generate a schema
from existing code [56]. This feature is particularly suited to the Agile methods used here where
requirements – and thus the data model – may frequently change. In such a scenario a new
version of the schema could be re-generated directly from the changed code.

Some test classes were written for familiarisation purposes, and to ensure that JiBX did indeed
work as advertised.

Microsoft	 Hyper-‐V	 is	 the	 target	 virtualisation	 backend	

There is a wealth of material on the internet discussing the manipulation of Hyper-V virtual
machines using Windows PowerShell, and several libraries exist for this purpose. One library in
particular is highly mature and offers a considerable amount of control over the virtualisation
layer via a simple command set [57].

Unfortunately, upon experimentation, accessing PowerShell – and by extension, this library –
proved to be problematic in Java. Other developers have had similar issues [58]. The use of
PowerShell was thus discarded in favour of using Microsoft’s Windows Management
Instrumentation (WMI) directly. JWBem provides access to WMI in Java [59], and the project
website includes example code for manipulating Hyper-V. JWBem also includes J-Interop, a
means for sending DCOM requests from Java [60], which was required for a number of
functions where WMI did not go far enough. Test code was written as a proof of concept to
determine that virtual machines could be started and suspended using these tools.

Additionally, the project goals are likely to necessitate the need to clone virtual machines as a
basic requirement. Consider the process of a student accessing a lab. Each stage will have a
virtual machine, authored by the tutor; however, students cannot all work on this single VM and
will each need their own instance to work in. The specific VM authored by the tutor can be
considered a template, and when students access a lab stage, the system will need to create a
clone of this template and allocate it to the student. The student will undertake the activities of
this stage of the lab in their clone, not in the original tutor-authored VM.

Test code was written to demonstrate that virtual machines could be cloned through Java code.
Actual cloning of virtual machines proved problematic because of the time required to copy the
large files used for virtual hard disks. However, the use of differencing disks, which simply
record changes with reference to a parent disk, resulted in a cloning process that was almost

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 27	 September	 2010	

immediate. This approach provides an additional benefit in that such difference disks take up
only a fraction of the disk space full clones would.

Authentication	 will	 be	 against	 an	 LDAP	 based	 directory	 service,	 which	 may	 or	 may	 not	 be	
Microsoft	 Active	 Directory	

The Java Naming and Directory Interface (JNDI) [61] provides a built in method of accessing
directories and authenticating against them, including LDAP-based ones. Some test classes were
written for familiarisation purposes. During this process it was found that the UID attribute,
commonly found on UNIX-based directories and equivalent to a user’s login name (as opposed
to their human readable “display name”), was not present on Microsoft Active Directory (AD).
This presented a problem in that a method of authenticating against AD using user name was
not immediately evident. One could authenticate against a display name (e.g. “Paul Neve”) but
this would be counter-intuitive to those used to using a specific login name (e.g. “K929923”).
Additionally, such display names are not always formatted as a user might expect (e.g. “Neve,
Paul R” versus “Paul Neve”).

Fortunately, it transpires one can authenticate to Active Directory’s LDAP implementation using
the syntax user@domain [62] rather than the more common LDAP strings, e.g. uid=user,
cn=domain. This syntax provides the desired behaviour where user is the user name rather than
the display name.

The	 system	 must	 be	 accessible	 both	 within	 the	 institution	 and	 remotely	

Consider VLab where a student accesses a lab from a client machine on the public internet. In
order to interact with a virtual machine console, their connection must be routed to an RDP
service on an internal IP address and port number. There is no direct route to this internal
address and port from the public internet. Currently, terminal Services Gateway addresses this;
TSG accepts inbound traffic through HTTPS, then negotiates between server and client to route
traffic appropriately.

Without such routing, there exists an issue which might be referred to as “the firewall problem”.
Figure 8 illustrates this.

Figure 8 – no route to virtual machines

Figure 8 shows the proposed client environment with using a VNC client in a web browser. The
web application aspect of the system can easily be published to the outside world by opening a

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 28	 September	 2010	

single firewall port, usually port 80. However, there is no way of routing VNC traffic to the
virtual machines. This could be resolved by placing virtual machines in a DMZ, but in the
environment at Kingston University no such facility exists, and the only way to route traffic from
the outside world into addresses within the institution is by opening ports on the firewall.

Figure 9 – opening ports to every VM

In Figure 9, this issue has been “resolved” by doing precisely this. However, this is not a
practical solution. Aside from being unrealistic from a security standpoint, it would mean that
each and every virtual machine would need a fixed IP address, which would not lend itself to
dynamic VM creation. In the proposed system, during a lifetime of a course dozens of VMs will
be created, one every time a student moves from one stage of a lab exercise to another. Every
time one of these new VMs came on line, it would require administrative changes to the firewall.
This is entirely impractical.

The ideal scenario is to extend the VNC protocol to enable the client to negotiate with an
intermediate “routing” application. This routing application would be installed behind the
firewall, and a single “hole” would be opened in the firewall at a defined port and IP address, as
shown in Figure 10:

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 29	 September	 2010	

Figure 10 – using an intermediate application to route to VMs

Here, a connection is established to the routing application, the VNC client sends details of the
internal address it wishes to connect to, and the routing application then forwards subsequent
traffic for that session to the correct internal address and port.

The UltraVNC implementation of VNC has an extension they call a “Repeater” [63]. In “mode 1”
it works in a broadly similar fashion to that outlined in Figure 10. However, UltraVNC is a
Windows-only implementation, as is their Repeater application, and in any case their Java
applet client does not support the Repeater. These factors make it unsuitable for use here.

An alternative is to find a generic port forwarding application and use that in a similar fashion.
There are many such applications, but Jumpgate [64] is the most appropriate because it offers
an “interactive mode”. This works as follows:

• Client opens connection to Jumpgate
• Jumpgate opens no forwarding connection; instead it waits for the client to transmit an

IP address and port number
• Once this is received, Jumpgate forwards subsequent traffic to the specified IP address

and port

The key element here is that Jumpgate does not require the destination port and IP address to
be determined in advance – it can be specified by the client. Therefore, it should be feasible to
use Jumpgate as a routing solution. The TightVNC client applet will be extended to provide a
“Jumpgate mode”, which will send the requisite details to Jumpgate before initiating its own
communications protocol. Preliminary modifications to the TightVNC client were made as a
proof of concept, and successful VNC connections via Jumpgate to multiple internal addresses
were established from remote locations with only a single port exposed at the firewall.

Jumpgate’s author notes that he has only built the application on UNIX environments, although
he reports that users have had success building on Windows using Cygwin [64]. In order to
ascertain there were no platform-specific dependencies, this was tested, and confirmed to work.

The	 system	 must	 be	 able	 to	 deliver	 both	 Windows	 and	 Linux	 virtual	 machines	

While Hyper-V can run non-Microsoft operating systems, some consideration is required as to
different platforms’ needs when cloning virtual machines. Particularly in the case of Windows-

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 30	 September	 2010	

based operating systems, such clones must be made unique and each workstation must have a
distinct and different computer name. Otherwise, clones will “clash” with each other and
networking issues will result.

Microsoft’s recommended solution is to use their tool Sysprep [65, 66]. Among other things,
Sysprep allows an administrator to create a base image, and then roll this image out to many
workstations. The Sysprep process will replace the aspects of the base image that must be
unique such the first time the clone boots.

Unfortunately, Sysprep operates by scripting the Windows Setup procedure. While this can be
configured to run in a zero interaction configuration, meaning the user is not prompted to enter
any data and simply has to wait for the process to conclude, it is not a quick process - a test
conducted with a simple image of Windows XP took over ten minutes. It would not be
acceptable to expect a student to wait for this period of time when moving from one stage of a
lab to another.

In fairness, it should be noted that Sysprep does far more than is actually needed for this project
– which is simply to ensure that the computer name of a Windows VM is always unique. For
this, it is unnecessary to go through the entire Windows Setup procedure again – it would be
enough to change the computer name on the new VM’s first boot.

David Clarke’s utility wsname provides a means of scripting a Windows computer name change
that works immediately, simply requiring a reboot to take effect [67]. To test the use of wsname,
the following script was created. This was placed in the c:\wsname folder on an XP virtual
machine as rename.bat, and set to run on startup before user login, by adding it to the startup
scripts in Local Computer Policy / Windows Settings.

@echo off
c:\wsname\wsname /n:WLAB-$RANDOM[10]
shutdown –r –f –t 1
del c:\wsname\rename.bat

The script uses wsname to rename the computer to WLAB plus a random string of ten
characters. The VM is then instructed to restart in 1 second’s time; the slightly-in-the-future
shutdown request means that there is time for the next line to execute, deleting the script and
preventing it from running on subsequent reboots. The XP virtual machine was then cloned;
upon boot the script changed the clone’s computer name. The clone then rebooted to make the
new name take effect.

When tested, the wsname approach meant that the first “boot” of a dynamically created
Windows XP VM (actually two boots) took approximately one minute and 30 seconds to start.
By following Dennis O’Reilly’s guidelines [68] this was reduced to less than one minute. This
represents a vast improvement over Sysprep. It is still not ideal, as a student will be subject to a
similar waiting time when they navigate to a new lab stage. However, this wait time will only
required the first time a student accesses a lab stage.

Assuming that some dynamic means of IP address allocation is being used such as DHCP, and
IP address clashes are avoided, there are likely to be fewer problems with UNIX-type VMs such
as Linux. However, if such VMs were using Samba – which effectively makes them an analogue
of a Windows workstation – then a similar approach would be required.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 31	 September	 2010	

4 Results	

4.1 Inception	 phase	

4.1.1 Initial	 use	 cases	

Immediately after the kick-off meeting, as the first output of the inception phase, a series of use
cases were created. As discussed in section 3.1.4 each distinct step of a use case has been
separated onto a single bullet-pointed line; taken in order, one after another, these bullet-points
roughly indicate the steps taken to achieve the use case. The aim was to compose use cases that
sat at Cockburn’s sea level [38] – i.e. user goals that can be accomplished by an individual in a
single sitting.

Given the phased approach to development, each phase has its own distinct set of use cases that
build on top of the previous. When a use case is unchanged from previous phases it is not
repeated. However, when an existing use case is modified to suit a subsequent phase, its text is
shown with in grey with additions and modifications in black. The use cases can be found in full
in Appendix B.

As noted in Development and Project Management Methodology, the MoSCoW method is used
to prioritise the use cases. However, prioritisation is also implied by the phased approach to
development. Given the caveat that later stages may be “dropped” depending on progress, this
suggests that initial phases are class M, i.e. “must haves”, with later stages decreasing in
priority. Initial prioritisation levels were therefore assigned where functionality in phases 1-3 is
class “M”, with functions in phases 4-5 set at “Should Have” and “Could Have” levels. This is in
line with the DSDM Consortium’s rule of thumb that M-level requirements should not make up
more than 60% of effort [69].

The initial use cases and their prioritisation levels are as follows:

Use Case
Number

Name Development
phase

Priority

1 Change virtual machine state 1 M
2 Connect to running virtual machine 1 M
3 Shut down idling VMs 1 M
4 Book lab session 2 M
1 v2 Change virtual machine state 2 M
3 v2 Shut down idling VMs 2 M
5 Do lab 3 S
5 v2 Do lab 4 C
6 Create/edit lab stage 5 C
7 Create/edit a tutor VM 5 C
8 Create/edit lab 5 C
9 Publish lab to students 5 C

Table 2 - initial use cases

At phase 4, the use cases begin to use the phrase “tutor VM”, and this is also reflected in the
metaphor for this phase (see Appendix A). A distinction between virtual machines authored by
the tutor and those that simply exist on the virtualisation backend (referred to as “backend
VMs) was seen as a necessity for the following reasons:

• VMs authored by the tutor will have metadata above and beyond that which can be
stored on the virtualisation backend (e.g. course details).

• Some means of distinguishing between those VMs that are intended for use in a lab
stage, and those that are there for reasons unrelated to WLab is necessary; otherwise,
on busy virtualisation servers, tutors would be faced with a hunt for suitable VMs in
amongst the “noise” every time they authored a lab stage.

• It is not practical to expect tutors to author VMs entirely from scratch. They would need
to manually install and configure the operating system and their applications before
they could begin work for the lab stage itself. Additionally, there would be no way that a

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 32	 September	 2010	

“fresh” VM could be accessed through the application – a newly configured VM would
not have VNC installed, thus a tutor would not be able to even connect to it. Thus, tutors
will author their VMs by cloning existing ones. In order to avoid a “chicken and egg”
scenario, the very first VM created by a tutor will have to be cloned from an existing
backend VM. Subsequent tutor VMs might use existing tutor VMs as their “parent”, but
the assumption is that a system administration will prepare at least one starting point
VM that can server as a foundation for tutors.

The associated sub-functions derived from the use cases are as follows:

No. Name Project Phase Priority
10 Log into the system 1 M
11 Start a VM 1 M
12 Suspend a VM 1 M
13 List (backend system) VMs 1 M
14 Display VM console 1 M
15 Show calendar 2 M
16 Choose date and time 2 M
17 List labs 3 M
18 Clone existing VM 3 M
19 List tutor VMs 5 C
20 Filter list of tutor VMs 5 C
21 Filter list of (backend system) VMs 5 C
22 Edit metadata for lab stage 5 C
23 Edit metadata for tutor VM 5 C
24 List lab stages 5 C
25 Filter list of lab stages 5 C
26 Edit metadata for lab 5 C
27 List students 5 C
28 Filter list of students 5 C

Table 3 – sub-functions derived from use cases

The priorities allocated were not immutable, and indeed were expected to change, i.e. “C”s
would be reclassified as “S”s if development followed the planned schedule. However, if
development stalled for any reason, the reverse would apply and “C”s would have been
reclassified as “W”s. This is in line with the Agile technique articulated in 3.1.7, “deliverables
may change but deadlines are fixed”.

One decision that might invite debate is the placement of the tutor-facing, management
functionality in phase 5. However, labs could be authored by manually editing XML files in a
text editor in combination with using the Hyper-V management tools to create virtual machines.
Thus the phase 5 features are important, but not mandatory – the application could be used
without them.

4.1.2 Initial	 use	 case	 diagrams	

The interactions between the use cases and sub-functions are described by use case diagrams.
There is heavy use of the <<include>>notation to represent the sub-functions shown in Table 3.
Pilone notes [70] that use cases should be <<included>> if they are subsidiary use cases that
otherwise never occur outside of the larger function; this is the case for most sub-functions here.
The one exception where <<extend>> is used can be found in stage 5, where the use case
Create/Edit VM, itself a bona fide user goal, may be used from and interrupt the flow of
Create/Edit Lab Stage. Such usage would seem to fit Pilone’s distinction between
<<include>> and <<extend>>.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 33	 September	 2010	

4.1.2.1 Use	 Case	 Diagram	 –	 Phase	 1	

Figure 11 – initial use case diagram for phase 1

4.1.2.2 Use	 Case	 Diagram	 –	 Phase	 2	

Figure 12 – initial use case diagram for phase 2

Initial - UCD Stage 1

Display VM
console

List VMs

Shut down
idling VMs

Suspend VMStart VM

Login
Connect to
running VM

Change Virtual
Machine State

System

Student

<<Include>>

<<Include>>

<<Include>>

<<Include>>
<<Include>><<Include>>

<<Include>>

<<Include>>

Initial - UCD Stage 2

New use case
in stage 2

Use case
modified from
previous stage

KEY

Use case
unchanged from
previous stage

Display VM
console

Choose date/time

Show calendar

List VMs

Book lab session

Shut down
idling VMs

Suspend VMStart VM

Login

Connect to
running VM

Change Virtual
Machine State

System

Student

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>
<<Include>><<Include>>

<<Include>>

<<Include>>

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 34	 September	 2010	

4.1.2.3 Use	 Case	 Diagram	 –	 Stage	 3	

Figure 13 – initial use case diagram for phase 3

Initial - UCD Stage 3

New use case
in stage 3

Use case
modified from
previous stage

KEY
Use case
unchanged from
previous stage

Display VM
console

Check for booking
or server capacity

Choose date/time

Finish Lab Suspend VM

Connect to lab

Clone existing VM

List labsDo lab

Show calendar
Book lab session

Shut down
idling VMs

Start VM

Login

Connect to
running VM

System

Student

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>><<Include>>

<<Include>>

<<Include>>

<<Include>>
<<Include>>

<<Include>>

<<Include>>

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 35	 September	 2010	

4.1.2.4 Use	 Case	 Diagram	 –	 Phase	 4	

Figure 14 – initial use case diagram for phase 4

Initial - UCD Stage 4

New use case
in stage 4

Use case
modified from
previous stage

KEY
Use case
unchanged from
previous stage

Display VM
console

Check for booking
or server capacity

Choose date/time

Navigate Stages

Finish Lab

Clone existing VMList labsDo lab

Show calendarBook lab session

Shut down
idling VMs

Suspend VM

Start VM

Login

Connect to
running VM

System

Student

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>><<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 36	 September	 2010	

4.1.2.5 Use	 Case	 Diagram	 –	 Phase	 5	

Figure 15 – initial use case diagram for phase 5

Initial - UCD Stage 5

This use case has
been reintroduced
from stage 1.

New use case
in stage 5

Use case
modified from
previous stage

KEY
Use case
unchanged from
previous stage

Display VM
console

Filter lab VM
list

List lab VMs

Check for booking
or server capacity

Choose date/time

Filter student
list

Modify students
on lab

List students

Publish lab to
student(s)

Modify metadata
for tutor VM

Modify metadata
for stage

Modify metadata
for lab

Modfy stages
in lab

Filter stage listList Lab Stages

Filter lab list

Create/Edit
lab

Filter VM list

Create/edit tutor
VM

List VMs
Create/Edit lab

stage

Tutor

Navigate Stages

Finish Lab

Clone existing VM

List labs

Do lab

Show calendarBook lab session

Shut down
idling VMs

Suspend VM

Start VM

Login

Connect to
running VM

System

Student

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>><<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Extend>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>><<Include>>

<<Include>>
<<Include>>

<<Include>>

<<Include>>

<<Include>>

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 37	 September	 2010	

4.1.3 Initial	 conceptual	 modelling	

Figure 16 shows the initial conceptual model. This shows anticipated data classes and
associations for all use cases up to and including stage 5. Given the simplicity of this stage 5
model there seemed little point distinguishing between this and earlier phases. Additionally, by
designing for phase 5 up front, even if development did not proceed at the anticipated pace and
some phases were dropped, any future work to complete the phases would be greatly simplified
because such work would already fit the available model.

Ambler notes that a key principle of Agile modelling is “model with a purpose” [71]. At this early
stage, the purpose was simply to identify the various classes/objects that the use cases suggest,
and the relationships between them. Identifying the attributes of the classes will take place
during the Elaboration phase, making use of the outputs generated there such as the screen
mockups.

Figure 16 – initial conceptual model

Initial - Conceptual Model

Student

Tutor

BookingLabStage

Lab

VM Resource

LabProgress

User

1..*

1

0..*

1

0..*

0..*

0..*

1

1

1..*

0..*

1

is published to

hascontains

owns

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 38	 September	 2010	

4.2 Elaboration	 phase	

4.2.1 Updates	 to	 Inception	 artefacts	 generated	 by	 the	 developer	 during	 Elaboration	

The first “prototype” generated during the Elaboration period took the form of screen mockups
designed to illustrate to the user community how the application might look and function, and
also to provide a guide for subsequent development. These can be found in Appendix C. In
authoring these mockups it became apparent that changes would be required to two use cases,
#5: Do Lab and #8: Create/edit lab, in order to accommodate the concept of “progress” during
a lab stage, and to integrate the previous distinct use case #9: Publish lab to student into #8.
These modified use cases can be found in full in the appropriate part of Appendix B.

An additional sub-function implicit in the screen mockup in Figure 39 is the ability to modify
the lab stages within a lab (i.e. the use of the << and >> buttons to add and remove lab stages).

Therefore, the following new sub-functions have been introduced:

No. Name Project Stage Priority
29 Set progress flag for lab stage 4 C
30 Edit student list for lab 5 C
31 Modify stages within lab 5 C

The use case diagrams for phase 4 and phase 5 must be modified accordingly:

Figure 17 – use case diagram for phase 4, modified during Elaboration

Update during elaboration - UCD Stage 4

New use case
in stage 4

Use case
modified from
previous stage

KEY
Use case
unchanged from
previous stage

Display VM
console

Set progress flag
for lab stage

Check for booking
or server capacity

Choose date/time

Navigate Stages

Finish Lab

Clone existing VM

List labsDo lab

Show calendarBook lab session

Shut down
idling VMs

Suspend VM

Start VM

Login

Connect to
running VM

System

Student

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 39	 September	 2010	

Figure 18 – use case diagram for phase 5, modified by the developer during Elaboration

Update during elaboration - UCD Stage 5

This use case has
been reintroduced
from stage 1.

New use case
in stage 5

Use case
modified from
previous stage

KEY
Use case
unchanged from
previous stage

Display VM
console

Edit student list
for lab

Set progress flag
for lab stage

Filter lab VM
list

List lab VMs

Check for booking
or server capacity

Choose date/time

Modify metadata
for tutor VM

Modify metadata
for stage

Modify metadata
for lab

Modfy stages
in lab

Filter stage listList Lab Stages

Filter lab list

Create/Edit
lab

Filter VM list

Create/edit tutor
VM

List VMs
Create/Edit lab

stage

Tutor

Navigate Stages

Finish Lab

Clone existing VM

List labs

Do lab

Show calendarBook lab session

Shut down
idling VMs

Suspend VM

Start VM

Login

Connect to
running VM

System

Student

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Extend>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>
<<Include>>

<<Include>>

<<Include>>

<<Include>>

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 40	 September	 2010	

4.2.2 Updates	 to	 Inception	 artefacts	 generated	 by	 user	 feedback	 during	 Elaboration	

For the most part, the user community accepted the artefacts produced during the Inception
and Elaboration phases of the project with no changes, with the following exceptions:

Change 1. The maximum runtime length should be per student, not per lab.

Change 2: Tutors (and students) would like the ability to take a snapshot of a
current VM state, and then to be able to revert to the previously snapshotted state.

Change 3. No ability yet exists for non-deterministic labs where the start point of a
lab stage is not the same as the end point of the previous. There is an assumption
in the mockups that the end point of a lab stage will always equate to the start
point of the next. Lab stages must have an additional attribute to hold the “end
point” of the exercise. This can be used as a reference by tutors as to the correct
“answer” for the lab stage if the start point of the next stage is not appropriate for
this purpose. The student user experience is unchanged.

These changes resulted in new versions of several use cases:

Use Case
Number

Name Development
phase

Priority

3 Shut down idling VMs 1 M
5 Do lab 4 C
6 Create/edit lab stage 5 C

The snapshot functions will be considered sub-functions. Due to the anticipated complexity of
these functions, they have been allocated to Stage 5 of development with the priority set
accordingly:

No. Name Project Stage Priority
32 Take snapshot 5 C
33 Revert to snapshot 5 C

The modified use cases can be found in Appendix B. Modifications to the screen mockups were
also required, and these can be found in Appendix C (except in the case of the snapshot features,
where the feature will simply require the addition of two new buttons to the screens where VM
consoles are displayed).

While it was not asked for explicitly, a logical extension of snapshotting is for an initial snapshot
to be quietly taken when a student first accesses a lab stage. This will enable the provision of an
additional option when a student is working in a lab, Revert to lab stage start – this will
allow the student to go back to the proverbial drawing board in situations where they have
travelled down a blind alley. This is also reflected in the updates to use case 5.

A final update to the use case diagram is shown in Figure 19.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 41	 September	 2010	

Figure 19 - Use case diagram for phase 5, modified as a result of user feedback during

Elaboration

Update during elaboration - UCD Stage 5

This use case has
been reintroduced
from stage 1.

New use case
in stage 5

Use case
modified from
previous stage

KEY
Use case
unchanged from
previous stage

Revert to snapshot

Take Snapshot

Display VM
console

Edit student list
for lab

Set progress flag
for lab stage

Filter lab VM
list

List lab VMs

Check for booking
or server capacity

Choose date/time

Modify metadata
for tutor VM

Modify metadata
for stage

Modify metadata
for lab

Modfy stages
in lab

Filter stage listList Lab Stages

Filter lab list

Create/Edit
lab

Filter VM list

Create/edit tutor
VM

List VMs
Create/Edit lab

stage

Tutor

Navigate Stages

Finish Lab

Clone existing VM

List labs

Do lab

Show calendarBook lab session

Shut down
idling VMs Suspend VM

Start VM

Login

Connect to
running VM

System

Student

<<include>>

<<include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<include>>

<<include>>

<<Extend>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>>

<<Include>><<Include>>

<<Include>>

<<Include>>

<<Include>>

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 42	 September	 2010	

4.2.3 Design	 modelling	

Based on the class diagram that was created in the Inception phase of the project, and using the
information obtained during the requirements analysis activities of Inception and Elaboration, a
first-cut data model was produced in the form of an updated class diagram:

Figure 20 – first cut data model

The attributes implied by previous activities have been added, navigability has been specified
along with a number of other changes. Only attributes and associations are shown – as these are
data classes it is not expected that they will have any operators apart from those required to
manipulate attributes. Such getters and setters are considered implicit (enumerating them
would serve little communicative value).

The most noteworthy structural change from the conceptual model is the new distinction
between different types of virtual machines that arose in later development stages:

• A “tutor VM” represented by the TutorVM class, i.e. a VM authored by a tutor to serve
as the start or end point of a lab stage.

• A VM created dynamically by the system that is used by a student when they undertake
a lab stage – represented by the class StudentAllocatedVM.

• A “backend VM” is any VM present on the virtualisation server. There is no specific
class; these are derived directly from the virtualisation server. Both tutor VMs and
StudentAllocatedVMs are, inherently, also backend VMs.

Some commentary on the changes from the conceptual model follows:

• Use case 5 describes how the system will dynamically create a new VM on demand if
needed when a student navigates to a lab stage. This mandates an association between
StudentAllocatedVM and TutorVM.

• Use case 6 version 2 introduces the concept of an “end point” virtual machine, which is
represented by the second endPointVm association between StudentAllocatedVM and
TutorVM.

Navigability between classes was restricted to a single direction wherever possible. These
choices here were driven by the screen mockups and also by applying the “Information Expert”
design pattern [72].

The design model was used to create an initial version of the XML schema provided in Appendix
H.

Design Model - Data Classes

-maxRuntime : int
Student

Tutor

-date : Date
Booking

-id : String
-name : String

LabStage

-id : String
-name : String

Lab

-id : String
-name : String
-backendName : String
-startedTime : Date

VM

-url : String
Resource

LabProgress

-id : String
-name : String

User

-id : String
-name : String

Course

-completed : boolean
StageProgress

-owningTutor : Tutor
TutorVM

StudentAllocatedVM

1

0...

-originalVm

0...

1

-booking

-owningStudent

1...

1

-labStages

-owningLab

1

1

vm

1

0...

-owningTutor

0...

1

-resources

1

1
-labSta...

0...

1

-vms

0...0...

0...

1

0...

1 -owningTutor

0...

1

endPointVm

0...1

-course

11

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 43	 September	 2010	

4.2.4 Project	 backlog	 document	

As noted in Methodology, a Scrum-style project backlog document was used to help manage
development. At the conclusion of the Elaboration stage, this document was as follows:

Item Use
case

Priority Estimate
of Value

 Estimate
of effort

New estimate of
effort as of sprint

 1 2 3 4 5

Write interface to
virtualisation backend

 M 10 3 days

Write interface to
authentication backend

 S 5 3 days

Write interface to data
backend

 M 10 1 day

Resolve the “firewall
problem”

 M 10 2 days

Secure system S 5 3 days
Change virtual machine
state

1 M 10 1 days

Connect to running virtual
machine

2 M 10 2 days

Shut down idling VMs 3 M 10 1 day
Book lab session 4 M 8 3 days
Do lab (note: introduces
dynamic creation of VMs)

5 S 10 5 days

Extend “Do lab” to
provide “stages”

5 v3 C 10 5 days

Create/edit lab stage 6 v2 C 4 2 days
Create/edit a tutor VM 7 C 4 2 days
Create/edit a lab 8 v2 C 4 2 days
Write snapshotting
functions

Various C 3 2 days

“Prettify” user interface C 3 3 days
Total days’ effort: 40 days

Table 4 – project backlog document

Key:
Infrastructural
User requested feature
UI

It should be noted that the number of days estimated to complete all the tasks exceeds the
amount of time allocated to development. However, this was mitigated by the research that took
place before evaluate the various technologies. The code generated during this process was often
readily adaptable for use within the development phase.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 44	 September	 2010	

4.3 Implementation	 details	

At the end of the development stage, a complete implementation of all use cases had been
delivered, and in some places additional functionality was added in order to address “holes” that
were exposed during initial testing by the developer. A development log, detailing the work
carried out in each sprint with a walkthrough and screenshots of the system at each increment
can be found in Appendix D.

4.3.1 Modular	 approach	 via	 interfaces	 and	 Spring	 dependency	 injection	

The design approach taken considers the possibility of future support for alternative
virtualisation backends, authentication methods and/or data storage methods. Certain aspects
of the application are represented via Java interfaces [73]. Implementations of these interfaces
are injected via Spring at runtime. Thus, one could write a new implementation of (for example)
the virtualisation interface to support VMWare, and switch between the two interfaces – i.e.
between Hyper-V and VMWare – simply by modifying one of the Spring XML configuration
files.

The interaction of the various packages and key interfaces in WLab is shown in Figure 21. The
dotted classes indicate examples of possible future implementations of the various interfaces:

Figure 21 - interaction of packages and interfaces

A full specification of these interfaces with details of their methods can be found in
Documentation for Developers (see Appendix J).

Design Model final

org.paulneve.wlab.we... org.paulneve.wlab.datamo...

org.paulneve.wlab.virtualisation

org.paulneve.wlab.authenticati...

org.paulneve.wlab.d...

VirtualisationAccessVLabImpl VirtualisationAccessVMWareImpl

<<Interface>>
VirtualisationAccess

AuthenticationAccessLDAPImpl AuthenticationAccessDBImpl

<<Interface>>
AuthenticationAccess

DataAccessHibernateImplDataAccessXMLImpl

<<Interface>>
DataAccess

<<use>>

<<use>>

<<use>>

<<use>>

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 45	 September	 2010	

4.3.2 Final	 data	 model	

The WLab data model is implemented by the classes in the org.paulneve.wlab.data package,
shown in Figure 22. It is based on the original conceptual model from Figure 16, but evolved
further during development.

Associations between data objects are maintained by string values that contain the ID of the
object being referenced. This is not usual in Java, where ordinarily one would simply use an
attribute of the same type of the class being referred. Because in Java object variables are simply
references [74] this means that the referring attribute would contain such a reference, not a
copy of the object.

However, this causes problems when the data moves outside the Java realm. Here, JiBX is used
to read and write XML files. Therefore consider a tutor with the name David Livingstone and
the ID ku12345. This object might be serialised as follows:

<tutor>
 <id>ku12345</id>
 <name>David Livingstone</name>
</tutor>

However, now consider a corresponding lab object owned by this tutor. Once serialised, it too
results in a file:

<lab>
 <id>CIM124-lab3</id>
 <name>ECT – mashups</name>
 <owningTutor>
 <tutor>
 <id>ku12345</id>
 <name>David Livingstone</name>
 </tutor>
 </owningTutor>
</lab>

Note the red text where data is duplicated across two files. This is not only inefficient, but would
be very difficult to keep synchronised. Hence the use of string values containing object IDs as a
reference medium.

Many of the one way references in the conceptual model are now two way; for example, the link
between Student and Booking is now a two way link. This change occurred in order to avoid
what otherwise would have required convoluted code in the booking functionality.

The XML schema used in the application to implement this data model can be found in
Appendix H.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 46	 September	 2010	

Fi
na

l -
 D

at
a

C
la

ss
es

or
g.

pa
ul

ne
ve

.w
la

b.
da

ta
m

od
el

-id
 :

St
rin

g
-n

am
e

: S
tri

ng

W
La

bO
bj

ec
t

-m
ax

R
un

tim
e

: i
nt

-m
ax

Bo
ok

in
gs

 :
in

t
-la

bP
ro

gr
es

sI
ds

 :
St

rin
g[

]
-b

oo
ki

ng
Id

s
: S

tri
ng

[]
-m

ax
C

on
cu

rr
en

tV
M

s
: i

nt
-v

m
Id

s
: S

tri
ng

[]

S
tu

de
nt

-d
at

e
: D

at
e

-s
tu

de
nt

Id
 :

St
rin

g

B
oo

ki
ng

-o
w

ni
ng

La
bI

d
: S

tri
ng

-o
w

ni
ng

Tu
to

rI
d

: S
tr

in
g

-v
m

Id
 :

St
rin

g
-e

nd
Po

in
tV

m
Id

 :
St

rin
g

-r
es

ou
rc

eI
ds

 :
St

rin
g[

]

La
bS

ta
ge

-o
w

ni
ng

Tu
to

rI
d

: S
tr

in
g

-c
ou

rs
eI

d
: S

tri
ng

-la
bS

ta
ge

Id
s

: S
tri

ng
[]

-la
bP

ro
gr

es
sI

ds
 :

St
rin

g[
]

La
b

-b
ac

ke
nd

N
am

e
: S

tri
ng

-la
bS

ta
ge

Id
 :

St
rin

g
-s

cr
ee

nS
iz

eX
 :

in
t

-s
cr

ee
nS

iz
eY

 :
in

tV
M

-u
rl

: S
tr

in
g

R
es

ou
rc

e

-la
bI

d
: S

tri
ng

-s
tu

de
nt

Id
 :

St
rin

g
-s

ta
ge

Pr
og

re
ss

Id
s

: S
tri

ng
[]

La
bP

ro
gr

es
s

U
se

r

-o
w

ni
ng

Tu
to

rI
d

: S
tr

in
g

C
ou

rs
e

-p
ro

gr
es

s
: I

te
m

Pr
og

re
ss

-la
bP

ro
gr

es
sI

d
: S

tri
ng

-la
bS

ta
ge

Id
 :

St
rin

g

St
ag

eP
ro

gr
es

s

-o
w

ni
ng

Tu
to

rI
d

: S
tr

in
g

-r
eb

oo
tA

fte
rC

lo
ni

ng
 :

St
rin

g

Tu
to

rV
M

-o
rig

in
al

Vm
Id

 :
St

rin
g

S
tu

de
nt

A
llo

ca
te

dV
M

 N
ot

St
ar

te
d

 In
Pr

og
re

ss
 F

in
is

he
d

 R
ev

ie
w

in
g

 M
ar

ke
dF

in
is

h
 F

ro
ze

n

<<
en

um
er

at
io

n>
>

Ite
m

P
ro

gr
es

s

-s
up

er
U

se
r :

 b
oo

le
an

T
ut

or

Fo
r b

re
vit

y,
 A

rra
yL

ist
s

1
1

0.
.*

1

1

0.
.*

0.
.*1

0.
.1

0.
.1

0.
.*

0.
.*

0.
.*

1

0.
.*

1

1
1

1

0.
.*

10.
.1

0.
.*

1

10.
.*

0.
.*

1

1.
.*1

F
ig

u
re

 2
2

–
 F

in
al

 D
at

a
M

od
el

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 47	 September	 2010	

4.3.3 Spring	 MVC	

The Spring framework is also used to implement a form of the model-view-controller pattern
throughout the user-facing aspects of the application. Java classes at the server side process
requests from the user, then build a Spring ModelAndView (MaV) object. The MaV includes a
reference to one of the JSP views, and the associated model the view will need in order to
display meaningful data. Figure 23 provides a simplified illustration of how this works in WLab:

Figure 23 – WLab’s use of Spring MVC

4.3.4 Interaction	 of	 components	 in	 a	 WLab	 deployment	

The deployment diagram in Figure 24 shows how the various discrete components interact with
each other when the application is in a deployed, running state. The element shown in green
represents an original output of this project. Elements shown in pink represent existing open
source applications that have been modified and/or extended to perform the functions required
of them in this project.

Controller
class

JSP-based view

builds

sends user input

Spring
ModelAndView

object
Model data

HTTP request via
xxxx-view.jsp

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 48	 September	 2010	

W
La

b
de

pl
oy

m
en

t

<
<

Se
rv

le
t

co
nt

ai
ne

r>
>

e.
g.

 A
pa

ch
e

T
om

ca
t

W
eb

 b
ro

w
se

r
(c

lie
nt

)

<
<

Se
rv

er
>

>
Ju

m
pg

at
e

Se
rv

er

<
<

Se
rv

er
>

>
H

yp
er

-V

<
<

co
m

po
ne

nt
>

>
Ji

BX

<
<

co
m

po
ne

nt
>

>
JW

Be
m

<
<

co
m

po
ne

nt
>

>
j-

in
te

ro
p

Th
e

sh
ad

ed
 a

re
a

in
di

ca
te

s
co

m
po

ne
nt

s
lo

ca
te

d
be

hi
nd

 a
n

in
st

itu
tio

na
l f

ir
ew

al
l

<
<

ar
ti

fa
ct

>
>

XM
L

fi
le

(s
)

<
<

ar
ti

fa
ct

>
>

ti
gh

tv
nc

-p
n-

m
od

if
ie

d.
ja

r

<
<

ar
ti

fa
ct

>
>

V
N

C
 s

er
vi

ce

<
<

ar
ti

fa
ct

>
>

V
ir

tu
al

m
ac

hi
ne

<
<

ar
ti

fa
ct

>
>

Ju
m

pg
at

e

<
<

ar
ti

fa
ct

>
>

W
La

b.
w

ar

<
<

de
pl

oy
>

>

<
<

de
pl

oy
>

>

<
<

de
pl

oy
>

>

<
<

de
pl

oy
>

>

<
<

de
pl

oy
>

>

F
ig

u
re

 1
 -

W
L

ab
 d

ep
lo

ym
en

t
d

ia
gr

am

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 49	 September	 2010	

4.4 Testing	

4.4.1 Suitability	 for	 purpose	

The original intention was that the majority of testing would occur “organically” as a result of
the iterative development cycle; prototypes would be delivered to the user community, who
would attempt to use the functions delivered and feed back to the developer bugs, areas where
functions do not operate as required, the resultant change requests, etc. Any use cases or
elements of use cases that were not provided for in the system delivered would become self-
evident during such a process, and any functions that did not operate as intended would
similarly be exposed.

Unfortunately, this did not occur as a result of limited availability of the user community during
the summer period when the development phases were taking place. This was further
compounded by that late stage at which necessary hardware resources were provided. This is
discussed further in 5.3, Evaluation of development and project management methodology.

To address this a series of end-to-end tests was written that that work through all functions in
the application, matching them up to use cases or other anticipated user needs. Developers
might also use this suite of tests in order to confirm that additions or changes to the application
have not impacted existing functionality.

This testing programme pre-supposes that the application is starting from a blank slate with no
pre-existing data and that a basic Windows XP virtual machine exists on the virtualisation
backend. The term “make the VM safe” is used to indicate a point where the VM should be
prepared with a tool such as Sysprep or wsname so that subsequent clones will become unique
upon boot.

These tests are intended to confirm functionality of the system in its stage 5 development phase.
Functions and use cases from previous phases of development that have been obsoleted in
subsequent phases are not tested.

At the end of development, these tests were used to identify outstanding bugs and other
cosmetic issues. These were addressed iteratively – after fixes were applied the tests were re-run
and this process repeated until all 12 steps of testing occurred with no visible issues arising.

The complete suite of tests can be found in Appendix E.

4.4.2 User	 testing	 /	 Sample	 labs	

Two sample labs were written to provide a foundation for future real-world testing, and to
provide exemplars for demonstration purposes:

4.4.2.1 The	 Paintbrush	 demo	 lab	

The Paintbrush demo lab is a simple exercise with three stages. In the first stage, the student is
presented with a VM with a blank instance of Microsoft Paintbrush and invited to draw a stick
figure. In the second stage, the student is invited to add a hat to the stick figure, and in the third,
the stick figure is given a bunch of flowers to hold. Approximations of the images after each
stages are shown in Figure 25.

Figure 25 - the images after each stage of the Paintbrush demo lab

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 50	 September	 2010	

The accompanying resources explain how to use the tools in Paintbrush to achieve the picture
required in each stage. They are in WLab webapp directory, called resource1example.htm,
resource2example.htm and resource3example.htm respectively, and can be found in the WLab
SVN.

This lab serves a number of different purposes. The first is to provide a lab exercise that can
easily and quickly be replicated by novice tutors during training. If provided with a basic
Windows XP instance by their system administrator, tutors can immediately start to create this
lab and learn how to use WLab. The tutor documentation uses this example extensively. The
second purpose is to illustrate how a well-crafted lab will introduce new techniques with each
stage. Here, basic use of the paintbrush is introduced in stage 1, the fill tool in stage 2, and
colour selection and the spray can in stage 3. Finally, this lab also provides an exemplar that
could be used for testing from a student perspective that does not require specialist IT
knowledge on the students’ part.

4.4.2.2 	 “Beginning	 programming	 using	 Java”	

This example lab is intended not to provide a real-world, definitive starting point for such a
course, but simply to illustrate how such a course might be configured.

A basic VM using Lubuntu was created. Within this VM the Java JDK and the NetBeans IDE
was configured. This VM was used to create three tutor VMs for a three-staged WLab lab. Each
VM provided the NetBeans environment, with the code segments in Figure 26, Figure 27 and
Figure 28 pre-loaded in stage 1, 2 and 3 respectively:

package beginningjava;

public class Main {

 public static void main(String[] args)
 {
 // TODO: Make the application say “Hello World!”
 }
}

Figure 26 - "beginning programming using Java" - code segment for stage 1

package beginningjava;

public class Main {

 public static void main(String[] args)
 {
 System.out.println(“Hello world!”);
 int mynumber = 7;
 System.out.println(“My number is “+mynumber);
 }
}

Figure 27 - "beginning programming using Java" - code segment for stage 2

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 51	 September	 2010	

package beginningjava;

public class Main {

 public static void main(String[] args)
 {
 int mynumber = 7;
 System.out.println(“My number is “+mynumber);
 if (mynumber > 10)
 {
 System.out.println(“That’s a big number”);
 }
 if (mynumber < 10)
 {
 System.out.println(“That’s a small number”);
 }

 }
}

Figure 28 - "beginning programming using Java" - code segment for stage 3

The accompanying resources for the stages can be found in Appendix I. In brief, the resource for
stage 1 talks the student through the addition of the appropriate line to print “Hello world!” to
the console. The second resource introduces the concept of variables, and invites the student to
change the number assigned to mynumber and re-run the program to see the altered output.
The resource for the final stage introduces the if keyword and conditional processing. The
student is prompted to alter the code to fire both of the triggers, and then told to try a value of
10 in mynumber (which will produce no output). They are encouraged to think about why, and
then to “fix” the problem.

There are several purposes behind the authoring of this lab. Firstly, it illustrates a lab more akin
to the intended purpose of WLab. The Paintbrush demo lab is trivial by design for good reasons,
but when used as an exemplar during demonstrations some in the audience struggled to think
beyond this triviality and could not visualise the real world uses. Secondly, the lab illustrates the
concept of a lab that is not directly deterministic, i.e. where lab stages do not directly follow on
from each other. A logical progression still takes place that describes an overall learning
objective, but there are “jumps” between the state at the end of one lab and the start of the next.
Finally, it demonstrates WLab’s ability to deliver a Linux-based environment.

An interesting fact discovered during the showcasing of this lab was that a tutor could connect
simultaneously to the same lab as a student with no adverse effects: both users see the same lab
state and can interact with the session. Strictly speaking this is a bug, but was actually perceived
by the user community to be desirable behavour in that it provides a mechanism for a tutor to
provide real-time support and directly interact with the student’s lab environment. Additionally,
it also opens up possibilities with respect to group work. Using a communal login, a group of
students could simultaneously access the same lab exercise, interacting with it and working
through the learning activity path in a collaborative fashion.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 52	 September	 2010	

4.5 Other	 project	 deliverables	 and	 outcomes	

4.5.1 Source	 code	 /	 Subversion	 repository	

A Subversion repository for the project can be found at

svn://wlab.paulneve.com

This includes source for the WLab application itself, along with the modified versions of
Jumpgate and the TightVNC Java applet required for proper functioning of WLab. The latter
two components are distributed under the terms of their open source licence – see Appendix G
for project licencing details.

Instructions for downloading source from this repository can be found in Documentation for
Developers (see Appendix J).

4.5.2 User	 documentation	

In 2.2, Project aims, the importance of user documentation as a means of facilitating the
creation of a user community was noted. This documentation can be found in Appendix J. This
was written with the intent that it could stand alone, separate from the rest of this report. Each
of the four user categories specified in 2.2 (student, tutor, system administrator and developer)
has a discrete section within this documentation.

4.5.3 WLab	 web	 presence	

A web site for WLab has been set up at the URL

http://www.paulneve.com/wlab

At the moment, this site contains a wikified version of the user documentation, and downloads
of binary distributions of the various WLab components. Functions for community discussion
are provided via comments facilities on each page of the wiki, and a separate forum with areas
for each of the four user categories.

4.5.4 Dissemination	 at	 ALT-‐C	 2010	

A poster presentation with accompanying handouts will occur at the ALT-C 2010 conference
[75]. The poster and handout can be found in Appendix F.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 53	 September	 2010	

5 Evaluation	

5.1 Evaluation	 of	 WLab’s	 role	 in	 ICT	 teaching	

The WLab application successfully achieves the aims set out in 2.2, Project aims, providing a
mechanism for the authoring (by tutors) and the delivery (to students) of composite learning
objects of the type illustrated in Figure 2. A student is presented with a lab environment where a
virtual machine console provides them with an area to undertake the practical aspect of a
workshop exercise, and static learning content that establishes the context of this virtual
machine can be displayed alongside it. Tutors use a web-based interface to author these lab
exercises, and to follow students’ progress.

WLab is not intended to provide a complete replacement for VLE products such as Blackboard
or Moodle. It cannot provide a complete electronic analogue of the traditional tutor-student
engagement, where a tutor supplies students with learning materials via media such as lectures,
handouts, references to textbooks and so on. Most VLEs – assuming willingness on the part of
the tutor, and good course design – can readily approximate this dynamic in an electronic form.
This is not the purpose of WLab.

WLab’s role in ICT pedagogy is to provide a complementary solution that runs alongside such
VLEs. It provides an active learning solution for ICT that current VLEs do not, by supplying the
student with a simulation of an on-campus workshop that ordinarily would require institutional
hardware. This environment is one in which S-Learning can readily take place. WLab is not
dependent on the existence or availability of a physical computer lab for workshop sessions to
take place, and can be used in a distance-learning mode at any time of the day.

It should be noted then that WLab in its current form is not an electronic assessment
application: rather, it is an environment in which activities can take place that encourage
learning by hands-on experimentation. In contrast, it is not suitable for assessment-driven
learning whereby a tutor directly evaluates a student’s performance based on the outputs of the
lab exercise, because WLab’s ability for a student to navigate between lab stages means there is
nothing to stop a student jumping to the end and thus seeing the “answer” to an exercise.
Consequently, unwilling students will probably gain little from WLab. However, a student who
wants to learn may acquire useful data in the act of comparing their current work with the
exemplar available in the form of the next lab stage. Important learning content can be imparted
via these comparisons, and in some respects this can be considered a form of formative feedback
in that the student is assessing themselves based on the exemplars available. The quick
navigation between milestone points of a workshop activity is not easily replicated outside of
WLab, which makes such self-assessment difficult or even impossible in a conventional, physical
workshop arrangement.

The composite Lab object in WLab also ensures that both the workshop environment itself and
the accompanying materials are inexorably linked, always delivered together, with one putting
the other into an appropriate context. Contrast the conventional approach, where students may
be encouraged to take handouts away for additional home study after an on-campus workshop
session; these handouts’ usefulness are curtailed when removed from the context of the
computer environment available at the institution.

Labs are ultimately stored as files on a computer file system and are easily distributable, which
opens up collaborative possibilities for ICT workshops not previously possible. Tutors might
share their labs with colleagues and other institutions, who may extend or tailor the labs to suit
their purposes. The logical conclusion of such collaboration would be a library of open
educational resources (OERs) potentially stored as IMS content packages [76]. While existing
OER repositories such as Jorum contain a wealth of static learning content [77], their ability to
supply content suitable for workshop based ICT teaching is limited. Widespread adoption of
WLab would enable such repositories to deliver fully self-contained workshop sessions for ICT.

One criticism of the application that has been levelled by academics is its terminology. There
may be tutors who would otherwise enjoy the pedagogic benefits of the application and the
composite learning object it implements, who would be discouraged by technical discussion
such as “backend virtual machine versus tutor virtual machine”.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 54	 September	 2010	

One argument is that terms more in keeping with a pedagogic lexicon (e.g. “workshop
template”) would make the application more accessible and increase the likelihood of
widespread uptake of the application. However, a counter argument is that new terminology still
requires explanation to tutors, with the added disadvantage that you also have to explain the
new terminology to those who might actually have understood “virtual machine”. Additionally,
there is a school of thought that making WLab too accessible is not necessarily a desirable
outcome due to considerations of competency. Novice users who do not fully understand the
implications of creating virtual machines that are connected to an institutional network could
actually do serious harm to IT services via WLab (e.g. if a VM were created with an IP address or
machine name that clashed with a server). Therefore, while WLab provides an environment
where tutors do not need to deal directly with the virtualisation backend, it is probably fair to
state that they do need to know what a virtual machine is, and what the implications are for a
system that dynamically creates them on demand. The documentation for tutors makes this
plain, and thus sets out to dissuade those who may not understand such considerations for
using WLab.

A compromise exists in that an institution can choose to override the default terminology of
WLab by modifying the strings.xml configuration file as they see fit. Should an institution feel
they could manage the technical risks (e.g. by placing the WLab environment in an entirely
isolated network) it is quite possible for the technically oriented terminology to be replaced with
one designed to be more accessible by less computer literate tutors.

5.2 Evaluation	 of	 technology	 outputs	

The project has delivered the following software outputs:

5.2.1 The	 WLab	 application	

The WLab application delivered represents a complete implementation of all functionality
specified by the use cases, screen mockups, and other Inception and Elaboration phase
artefacts. Indeed, the application that emerged at the end of the development process actually
goes beyond the requirements explicitly specified. Nevertheless, the following limitations have
either been identified, or are anticipated as a possibility when deployed in a real-world
environment:

5.2.1.1 Issue	 #1:	 Resolution	 of	 virtual	 machines	

One limitation of WLab, compared to the existing VLab application, arises because of its
integrated presentation of both virtual machine console and accompanying static learning
resources within a web page. VLab’s use of Windows Terminal Services and Remote Desktop
means that a student connecting to a lab session can utilise the entire screen space of their client
computer. A tutor does not therefore need to consider screen resolution settings. In contrast,
WLab uses the resolution of the tutor VM. If this is set higher than that of the client PC, the
student will have to scroll around the virtual desktop via scrollbars. Setting the resolution to a
low value eliminates this issue, but often this will hinder the student’s ability to work efficiently
on the workshop task. For example, using an integrated development environment such as
Eclipse or NetBeans with a resolution of 800 x 600 would be an incredibly frustrating
experience. The ability to scale the virtual machine console mitigates this to some degree, but
the loss of detail that is entailed may make text hard to read which, again, will hinder the
student’s efficiency.

5.2.1.2 Issue	 #2:	 Scalability	 and	 concurrency	

Thus far, all use of the application has been in a testing or demo environment with only a
handful of concurrent users. The scalability of the system is totally untested and, ultimately, it
will be difficult to establish this without subjecting it to a notable amount of concurrent users in
a production environment.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 55	 September	 2010	

WLab uses only a single server with no direct ability to balance load across several servers5.
The amount of concurrent users that a WLab deployment can accommodate will depend on the
capacity of the virtualisation backend, rising with the RAM size and processor power of the
server.

Regardless of the capabilities of the hardware, one unknown quantity is the Hyper-V software’s
ability to cope with many simultaneous requests to create a virtual machine. Consider the
scenario of a scheduled workshop with 20 students. When the tutor tells his students to “click
the Create lab” button for the first time, WLab will send 20 simultaneous requests to Hyper-V
to clone a VM. WLab’s scalability will be directly linked with how well Hyper-V can handle such
an event.

An attempt to simulate such a scenario was conducted with via the code fragment below, which
uses WLab’s VirtualisationAccessHyperVImpl class:

for (int i=0; i<20; i++)
{
 Thread thread = new Thread()
 {

public void run()
{

 hv.cloneVM("Base XP", "Test-"+UUID.randomUUID());
 this.stop();
 }
 };
 thread.start();
}

This ran with no problems and 20 VMs were created within a second or two. This would seem to
imply that there would be no problem. However, there may still be factors that remain
unconsidered that would impact a real-world many-user scenario.

Finally, the application itself is written with concurrency in mind, using Java Servlet sessions to
maintain user-specific states. No issues here are anticipated – there is no theoretical reason why
3 users should work and 30 or even 300 should not – but it should be noted that this, also, is
untested.

5.2.1.3 Authentication	

Kingston University uses both Active Directory and Novell eDirectory, and the intention was to
develop and test against both, which would demonstrate compatibility of authentication across
different vendors. When tested against Kingston University’s eDirectory server, authentication
was unsuccessful. Given that similar problems were experienced when trying to connect the
popular Java-based LDAP browser JXplorer one can conclude that an issue exists between KU’s
particular instance of eDirectory and Java’s JNDI. Unfortunately development had to cease
before a resolution was found. Authentication against non Active Directory LDAP servers is thus
untested.

5.2.2 Connectivity	 and	 security	

As detailed in Figure 10, Jumpgate is used as an intermediate routing application in order to
route network connections to the correct virtual machine through an institutional firewall.

In its interactive mode, the default version of Jumpgate accepts any and all connections to the
port specified in its runtime command line. It also supplies a prompt upon the establishment of
a TCP/IP connection:

<hostname or IP address> <port> (e.g.: bsd.gr 80):

5	 Although	 if	 a	 clustering	 solution	 was	 used	 that	 presents	 itself	 to	 other	 services	 as	 a	 single	 server,	 there	 is	 no	
reason	 why	 such	 a	 solution	 could	 not	 be	 used	 with	 WLab.	

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 56	 September	 2010	

This represents a considerable security risk in that someone could manually connect to this
open port and from there, establish a connection to any internal machine accessible from the
Jumpgate server. The helpful reminder of syntax is rather too helpful in this scenario!

In order to address this, Jumpgate was extended to accept a password parameter as part of its
command line. Any incoming connection that does not supply the password is disregarded. This
password must be specified in the Jumpgate command line when run, and thus would only be
known by the system administrator responsible for starting the Jumpgate service. Additionally,
the “helpful” prompt has been removed. This would prevent any casual port-scanning activity
from using Jumpgate. It is, however, by no means an entirely secure solution. When
establishing a connection to Jumpgate, the password is sent in a plain-text format and thus a
hacker with packet sniffing software would be able to read this password. The intent behind
these changes was simply to discourage the “casual” kind of hacking commonly seen in
university environments.

A superior approach from a security point of view would have been to make use of the
“experimental” version of the TightVNC applet which has support for SSH tunnelling. This
would provide routing facilities – making Jumpgate unnecessary – and also have the benefit of
encrypting all traffic [78]. However, this would have make the operation of WLab dependent on
the existence of such an SSH server at an institution.

As well as the other Jumpgate-related modifications made to the TightVNC applet, a facility to
encrypt applet parameters was also added. This means that users cannot derive information
about the internal network by selecting View Source while viewing one of the web pages that
comprise the client-facing aspects of WLab. However, this encryption uses a hard-coded string
within the VNC applet source code, so one could easily obtain this string by reading the (freely
available!) source. It should be noted that, as with the measures taken in Jumpgate, this is
intended simply to obfuscate such parameters from casual mischief-makers among the student
body. For extra security, a system administrator could change the string and then recompile the
applet.

5.3 Evaluation	 of	 development	 and	 project	 management	 methodology	

On the surface, the hybrid Agile approach outlined in 3.1 was a resounding success. All 5
development phases were completed and, as noted previously, the final application goes beyond
the specified user requirements. The original development schedule, if anything, proved to be
slightly pessimistic.

However, this is only part of the picture. A key principle of the approach was iterative
development. The expectation was that the regular delivery of working prototypes to users, and
a regular feedback cycle would both ensure the end product fitted user needs in the real world
and also eliminate any bugs en route. Unfortunately, opportunities for feedback between
developer and the user community were less than hoped for at the start of the project. The
development period – scheduled during June and July – coincided with the summer holiday
period. As a result, the user community were often unavailable at the end of an iteration, and no
feedback was available. Development still adopted a weekly cycle of iterations, and at the end of
each iteration the features from one of the five project phases (see 2.3.1) was indeed
implemented, but the user community’s sight of these increments was irregular.

The issue was compounded by the lack of on-site hardware resources available to the project
during development. Even when the required individuals were available, the post-iteration
dialogue was restricted to a session of usually an hour or two’s duration, with new features
demonstrated by the developer. No real capacity for “hands-on” time by the users was possible
as the only place the application existed in a deployed and usable state was on the developer’s
own hardware. Hardware resources were eventually made available in early August, and the
application has now been rolled out and is accessible by the users, but by then the development
period had concluded and the opportunity for an iterative, evolutionary approach had elapsed,
at least with respect to the schedule outlined in Figure 4 and the project detailed here.

The most deleterious outcome of this is that the application remains largely untested from a
real-world tutor’s perspective. The end-to-end test plan in 4.4.1 was designed to mitigate this to
some extent, but ultimately represents the developer’s understanding of the tutor role. Some

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 57	 September	 2010	

assumptions may be faulty. While better than nothing, the test plan is markedly inferior to the
evolutionary, ongoing testing that would have occurred in a true iterative, Agile development
cycle.

In hindsight, the DSDM Project Approach Questionnaire [79] might have been a useful tool. As
was the case with the other techniques borrowed from the various Agile methods, it would have
required adaptation for the small project team involved, but point 13 in particular (which
ascertains whether “it will be possible for the Solution Developers to have easy access to
Business Ambassadors and Business Advisors throughout the project”) would have exposed the
issue at an early stage.

Given the reduced availability of the user community, it is perhaps worth re-evaluating whether
more traditional, “big design up front” methodologies might have been appropriate for this
work. With a BDUF approach, the first month or so of effort could have been devoted to
producing an exhaustive and complete design6 for the application before a single line of code
was committed. Once complete, this design could then have been discussed with and signed off
with the users. Only a single session with them would have been required.

One criticism of BDUF is that it can yield software that, once delivered, proves not to fit the
needs of its user community. This usually occurs when requirements change during the
development period, or when requirements are not correctly encapsulated in the first place –
both issues that Agile approaches set out to prevent. However, it can be argued that this project
would be no worse off – the software delivered at the end of the design and development cycle
would still need its suitability for purpose ascertained by actual use in the real world. However,
a detrimental aspect of BDUF would be the inevitable reduction of development time, which
would result in a less comprehensive feature set.

Proponents of Agile go to great pains to dissuade people of the misconception that Agile means
no design up front [80, 81]; rather, “Little Design Up Front” or “Just Enough Design Initially”
(or JEDI) is the correct approach. In this project, JEDI was used to good effect. The design
artefacts from the early stages were not as comprehensive as would have been the case from a
BDUF approach7, but they provided enough of a skeleton to ensure that, during development,
blind alleys were avoided. These artefacts were in no way final, and evolved during the
development process, but without these foundations a trial-and-error approach would have
been inevitable. This would have greatly complicated development.

Ultimately, while it was not intended at the outset, the methodology evolved into something that
has commonalities with Feature Driven Development:

Figure 29 - Feature Driven Development [82]

The stacked layers indicate iterations. If one substitutes the word “phases” for “feature”, this fits
the development approach that ultimately emerged fairly closely (albeit slightly re-ordered).
The grouping of functions within each phase proved to be well organised. In most cases,
subsequent phases entailed the creation of new code rather than the modification of existing
code. In only a few instances did existing code require any fundamental changes to
accommodate a subsequent phase, and for the most part these had been anticipated by the
versioning of certain use cases (see Appendix B), and in the use case diagrams (see 4.1.2, Initial
use case diagrams).

6	 In	 contrast	 to	 the	 skeletal	 artefacts	 actually	 produced,	 e.g.	 Figure	 15.	
7	 The	 Agile	 Manifesto	 [1]	 states	 “working	 software	 over	 comprehensive	 documentation”,	 so	 this	 is	 by	 no	 means	 a	
bad	 thing!	

Develop an
overall model

Build a
features list

Plan by
feature

Design by
feature

Build by
feature

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 58	 September	 2010	

Overall then, difficulties of the iterative/feedback aspect aside, the methodology worked well.
Ultimately, as stated in the Principles of the Agile Manifesto [83], “working software is the
primary measure of progress”. In this respect, progress can certainly be said to have occurred.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 59	 September	 2010	

6 Conclusion	 and	 future	 work	

For ICT subjects, virtual learning environments provide an electronic analogue of a traditional
FE or HE classroom environment – but only to a point. VLEs fail to provide an environment in
which students can undertake practical lab work, which is a crucial component of ICT teaching.

Past projects that leveraged virtualisation to deliver this component electronically have
addressed only the infrastructural issues presented by ICT workshops – their delivery to
distance learning students, and overcoming the limitations of institutionally available
equipment which is usually ill-suited for advanced ICT teaching.

WLab goes further by using the characteristics of virtual machines for pedagogic advantage.
Virtual machines are only one element of WLab’s composite learning object, supplying the data,
environment and work area for the student to undertake a stage of a lab exercise. They are
delivered in an integrated fashion alongside static learning content (called resources) which
set an appropriate context for the practical activity, linking it to other learning content such as
lectures, textbooks and other sources. The concept of stages (with each stage described by its
own virtual machine) permits a tutor to define an optimum path through a lab activity with
working exemplars represented by milestone points. A student can navigate between these
stages and immediately see their work area update. They can compare and contrast their current
work with a previous or future stage of the activity, and then revert back to their own efforts.
Such comparisons provide important learning content.

WLab labs are portable, thus the application provides a foundation for the growth of a
community where tutors and institutions can collaborate on and share complete, self-contained
ICT workshops. Previously, such collaboration could only involve the static content aspect of a
workshop exercise, and tutors/institutions would have to replicate the original laboratory
environment or support the students in doing so themselves.

To promote the creation of such a community, an open approach has been taken throughout.
Where third party components were required, open source solutions were chosen. From a user
perspective, the application has been written to run across all operating systems and web
browsers. From an administrative perspective, while time constraints and institutional needs
have dictated the requirement of Microsoft Hyper-V as a virtualisation backend, the application
has been written in such a fashion and using components that would enable future work to
simply “slot in” support for alternative virtualisation solutions. A similar arrangement exists for
authentication and data storage.

The creation of a WLab user community was the driving factor behind the establishment of a
WLab web site, available at http://www.paulneve.com/wlab. A wiki and forums are provided for
community discussion and collaboration.

While a stand-alone project in its own right, WLab was always intended to be an iterative step
within a wider programme of e-learning development at Kingston University. Figure 30 (itself a
progression of Figure 3) shows how this programme will guide and shape future work:

Figure 30 - a roadmap for future work

WLab is intended to complement existing VLEs; it does not replace or even yet integrate with
them. Integration with Kingston University’s own KUOLE VLE was de-scoped at a relatively
early point of this project, but re-introducing such integration is anticipated to be an early
endeavour. Certain elements of the XML schema and several of the non-functional

On-site lab
facilities/students'
own equipment

Virtual machine
images run via

Virtual PC

Virtual machine
images delivered

via VLab and
Terminal Services

Gateway

WLab ?

Electronic assessment

KUOLE virtual learning environment

Feedback and
results from real-
world deployment

and testing of WLab

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 60	 September	 2010	

requirements have KUOLE in mind which makes it a logical starting point for VLE integration;
later, integration with industry standard VLEs such as Moodle and/or Blackboard will be highly
desirable.

The preceding has primarily been concerned with documenting the creation of WLab. There has
been little opportunity for real-world testing; testing has concentrated on basic application
functionality and eliminating bugs. However, in the immediate future it is expected that several
labs will be authored and delivered to students in a real-world environment. This will almost
certainly expose gaps in functionality and flawed assumptions that were not readily revealed in
the theoretical evaluation and analysis in the preceding. There will also be opportunities to
gather analytics that will form the basis of an evaluation of WLab’s pedagogic effectiveness in a
real world environment.

The Learning Technologies Research Group at KU has produced a number of outputs designed
to facilitate electronic assessment. WLab, as discussed in 5.1 Evaluation of WLab’s role in ICT
teaching, only provides a very basic form of assessment in that a student might assess
themselves by means of comparison against next or previous lab stages. A potentially important
stream for future work might be to examine the use of electronic assessment alongside WLab.
Initially, this would probably occur simply by including appropriate tools within WLab tutor
VMs. Later, the WLab environment itself might integrate these tools more directly.

Other future development work, not directly implied by Figure 30, may seek to modify the
composite learning object for different contexts. Unlike many virtual lab environments, WLab
does not seek to provide a solution for a specific domain (e.g. security or networking). If a
workshop exercise can be performed at a computer, then conceivably, a WLab lab can be
authored for it. However, this genericism does mean that, for certain domains within ICT
teaching such as security, more specialised solutions such as V-NetLab might be a better fit [12,
23].

Consider a workshop exercise in IT security where the student has two machines, a “hacker”
machine and a “server” machine. This does not really fit WLab’s staged paradigm, where a
learning object has several virtual machines, but they are intended to provide a description of
the same entity over time and do not run concurrently. To deliver this workshop in WLab, one
would need to author two separate labs each with a single lab stage/VM. This is just one
example of an ICT workshop scenario where a single virtual machine does not provide a rich
enough environment for the student’s activities during the exercise.

One might postulate an extended WLab composite learning object, where the virtual machine in
a lab stage is replaced with a virtual network – i.e. a group of virtual machines. The lab console
UI would be refactored to accommodate several VMs presented to the student simultaneously.
The staged approach – along with its inherent pedagogic benefits – could still be utilised
(although the effort involved in authoring the lab would be multiplied by the size of the virtual
network).

Further extensions to the application can be anticipated in the administrative functionality.
Basic functions exist for a tutor to manage students using WLab, but these functions would
probably become unwieldy when dealing with large amounts of students and/or lab exercises.
Additional functions to permit a tutor to handle a cohort rather than individual students would
be desirable, as would extensions to the usage metrics currently available, which simply logs a
student’s progress through the lab stages. Extensions might attempt to correlate students’ usage
of WLab with other performance indicators, such the gradebooks available within VLEs.

The limitations imposed by the scalability of Hyper-V could be eliminated by the addition of
functionality that would allow the use of several virtualisation servers. Assuming that the virtual
machines were stored in a location accessible to all of the virtualisation servers (e.g. via a SAN)
it would be trivial to arrange for the server currently under the least load to load and start a
given VM.

Finally, another stream for future work would be to introduce “intelligence” into the application
so that it “knows” when a student has reached the end of a stage, and automatically moves them
onto the next. This could be done through the introduction of a rule set, created by the tutor
when they author a lab, that looks for certain text strings within the VM console. When such text

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 61	 September	 2010	

strings appear, a trigger could be sent that navigates to the next stage. Potentially, other triggers
might be set up to recognise common mistakes being made, and update the static resources
accordingly. This would lend itself to a phenomenographic approach, described in Learning and
Awareness as the examination of “the variation in ways people experience phenomena in their
world” [84]. Students will take different paths through a learning objective. Analysis of these
different paths will reveal commonalities between them that all students must inevitably take,
which can already be used as the basis of milestone points i.e. WLab’s lab stages. The context-
setting narrative supplied by the accompanying static resources, if it anticipates and discusses
these potential paths, can also impart crucial learning material to students. Well-designed WLab
learning objects should thus already be crafted with a phenomenographic approach at their
core.

The intelligent WLab postulated would go further by allowing a tutor to design a lab that adapts
itself based on the student’s path. Currently, the path a student must take is linear, and if they
deviate too much from the expected path the assumption is that they will eventually reach a
point of diminishing returns, “give up”, and simply navigate to the next lab stage whereby they
are instantly provided with a “correct” environment with which to continue work. In contrast,
the “intelligent” WLab described would allow for tutors to design labs that “branch”, where
learning content is only delivered if certain conditions were met. Consequently, new
components within the WLab composite learning object are anticipated. A “blind alley” would
represent an “incorrect” path. An “alternative route” would represent a non-optimal but
ultimately functionally identical path. A tutor could design for these non-desirable paths and
provide resource objects that discuss the differences between them and the optimal path, and
guide the student in the right direction.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 62	 September	 2010	

7 References	

1. Beck K et al. The Agile Manifesto [online]. Available from http://www.agilemanifesto.org [Accessed

19th August 2010].

2. Wiley, DA. Connecting learning objects to instructional design theory: A definition, a metaphor, and a
taxonomy. The Instructional Use of Learning Objects [online]. Association for Instructional
Technology; 2001. Available from http://www.reusability.org/read/chapters/wiley.doc. [Accessed 4th
May 2010].

3. Boisot M. A Framework for Learning in Organisations, Institutions and Cultures. London, UK:
Routledge; 2001. p. 90-108.

4. Teo CB, Gay RKL. A Knowledge Driven Approach to Personalize E-Learning. ACM Journal of
Educations Resources in Computing 2006; 6(1): p1-15.

5. Microsoft. Common Language Runtime [online]. Available from http://msdn.microsoft.com/en-
us/library/8bs2ecf4.aspx. [Accessed 19th August 2010].

6. Linholm T, Yellin F. The Java Virtual Machine Specification [online]. Available from
http://java.sun.com/docs/books/jvms/second_edition/html/VMSpecTOC.doc.html. [Accessed 5th
August 2010].

7. Williams DD. Evaluation of learning objects and instruction using learning objects. Wiley DA (Ed),
The Instructional Use of Learning Objects [online]. Available from
http://www.reusability.org/read/chapters/williams.doc. [Accessed 19th August 2010].

8. Neve P. A General Approach to E-Learning for ICT Students. Unpublished submission for MSc
Informatics module Research Methods at Kingston University. 2009. Available from
http://www.paulneve.com/cgi-bin/wiki.pl/A_General_Approach_to_E-Learning_for_ICT_Students.

9. Wilson K, Korn JH. Attention During Lectures: Beyond Ten Minutes. Teaching of Psychology 2007;
34(2): p85-89.

10. Bonwell CC, Eison JA. Active Learning: Creating Excitement in the Classroom. ASHE ERIC Higher
Education Report No. 1. Available from http://www.ntlf.com/html/lib/bib/91-9dig.htm.

11. Mellor R, Mellor N. Applied E-Learning. Copenhagen, Denmark: Forlaget Globe; 2004. p30-31.

12. Gaspar A, Langevin S, Armitage WD. Virtualization Technologies in the Undergraduate IT
Curriculum. IEEE IT Pro. July/August 2007: p. 10-17.

13. Popek GJ, Goldberg RP. Formal Requirements for Virtualizable Third Generation Architectures.
Communications of the ACM 1974; 17(7): p. 412-421.

14. Varian M. VM and the VM Community: Past, Present, and Future. SHARE 89 Sessions 9059-9061.
Princeton University, New Jersey, USA. August 1997. p3-25.

15. VMWare. VMWare Milestones [online]. Available from
http://www.vmware.com/company/mediaresource/milestones.html [Accessed 16th June 2010].

16. IDC. Virtualization Continues to See Strong Growth in Second Quarter [online]. Available from
http://www.idc.com/getdoc.jsp?containerId=prUS21473108 [Accessed 4th February 2010].

17. IBM Global Education. Virtualization in Education [online]. Available from
http://www.ibm.com/solutions/in/education/download/Virtualization%20in%20Education.pdf
[Accessed 4th February 2010].

18. McEwan W. Virtual machine technologies and their application in the delivery of ICT. Man S (Ed.),
Proceedings of the 15th annual conference of the New Zealand National Advisory Committee on
Computing Qualifications (NACCQ). Hamilton, New Zealand. 2002. p55-62.

19. User Mode Linux Web Site [online] Available from http://user-mode-linux.sourceforge.net. [Accessed
16th June 2010].

20. Bullers WI, Burd S, Seazzu AF. Virtual Machines - An Idea Whose Time Has Returned: Application to
Network, Security and Database Courses. ACM SIGCSE Bulletin 2006; 38(1). p102-106.

21. Anderson BR, Joines AK, Daniels TE. Xen Worlds: Leveraging Virtualization in Distance Education.
ACM SIGCSE Bulletin 2009; 41(3): p293-297.

22. Krishna K, Sun W, Rana P, Li T, Sekar R. V-NetLab: A cost effective platform to support course
projects in computer security. 9th Annual Colloquium for Information Systems Security Education.
Atlanta, USA. 2005.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 63	 September	 2010	

23. Gaspar A, Langevin S, Armitage W, Rideout M. Enabling new pedagogies in operating systems and
networking courses with state of the art open source kernel and virtualization technologies. Journal of
Computing Sciences in Colleges 2008; 23: p189-198.

24. Gaspar A. SOFTICE Project Wiki: Pedagogical Resources [online]. Available from
http://softice.lakeland.usf.edu/wiki/index.php/Category:Pedagogical_Resources. [Accessed 4th May
2010].

25. Microsoft. System Center Virtual Machine Manager web site [online]. Available from
http://www.microsoft.com/systemcenter/en/us/virtual-machine-manager.aspx. [Accessed 19th
August 2010].

26. Cockburn A. Crystal Clear: A Human Powered Methodology for Small Teams. Addison Wesley;
2004. p140.

27. Deemer P, Benefield G, Larman C. The Scrum Primer [online]. Available from
http://www.scrumalliance.org/resource_download/339. [Accessed 10th May 2010].

28. DSDM Consortium. Atern Full Product Set [online]. Available from
http://www.dsdm.org/knowledgebase/download/156/atern_full_product_set.pdf [Accessed 10th
May 2010].

29. Aternity Solutions. Atern on a page [online]. Available from
http://www.dsdm.org/knowledgebase/download/205/atern_on_a_page.jpg [Accessed 10th May
2010].

30. DSDM Consortium. DSDM Atern Handbook. Whitstable, Kent, UK: Whitehorse Press; 2008. p83-87.

31. Ambler SW. The Agile Unified Process [online]. Available from
http://www.ambysoft.com/downloads/agileUP.zip [Accessed 11th May 2010].

32. IBM. IBM Rational Unified Process [online]. Available from
ftp://ftp.software.ibm.com/software/rational/web/datasheets/RUP_DS.pdf [Accessed 11th May
2010].

33. Ash S. MoSCoW Prioritisiation Briefing Paper [online]. Available from
http://www.dsdm.org/knowledgebase/download/165/moscow_prioritisation_briefing_paper.doc
[Accessed 12th May 2010].

34. DSDM Consortium. DSDM Atern Handbook. Whitstable, Kent, UK: Whitehorse Press; 2008. p63-68.

35. Cockburn A. Crystal Clear: A Human Powered Methodology for Small Teams. Addison Wesley;
2004. p181-182.

36. DSDM Consortium. DSDM Atern Handbook. Whitstable, Kent, UK: Whitehorse Press; 2008. p78.

37. Beck K. Extreme Programming Explained. Addison-Wesley; 2000. p31.

38. Cockburn A. Writing Effective Use-Cases. Addison-Wesley; 2001. p7-9.

39. Cockburn A. Crystal Clear: A Human Powered Methodology for Small Teams. Addison Wesley;
2004. p174-175

40. DSDM Consortium. DSDM Atern Handbook. Whitstable, Kent, UK: Whitehorse Press; 2008. p69-75.

41. Beck K. Extreme Programming Explained. Addison-Wesley; 2000. p20.

42. Cockburn A. Information Radiator [online]. Available from
http://alistair.cockburn.us/Information+radiator [Accessed 14th May 2010]

43. Jeffries R. Big Visible Charts [online]. XP Magazine. Available from
http://xprogramming.com/xpmag/BigVisibleCharts [Accessed 14th May 2010]

44. Abrahamsson P, Warsta J, Siponen MT, Rokainen J. New Directions on Agile Methods: A
Comparative Analysis. Proceedings of the 25th International Conference on Software Engineering
Portland, Oregon, USA. 2003. p244-254.

45. Waters K. 10 Key Principles of Agile Software Development [online]. Available from
http://www.agile-software-development.com/2007/02/10-things-you-need-to-know-about-
agile.html [Accessed 14th May 2010].

46. Aftab T. Requirement Modeling in Agile Framework [online]. Available from
http://www.ephlux.com/Whitepapers/Requirement_Modeling.pdf [Accessed 14th May 2010].

47. Novell. Mono Project web site [online]. Available from http://www.mono-project.com. [Accessed 17th
June 2010].

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 64	 September	 2010	

48. Rosen A, de Icaza M. Forum discussion: Is Mono ready for prime time? [online] Available from
http://stackoverflow.com/questions/18450/is-mono-ready-for-prime-time/93952#93952. [Accessed
17th June 2010].

49. Smith B, Free Software Foundation. Microsoft's Empty Promise [online]. Available from
http://www.fsf.org/news/2009-07-mscp-mono. [Accessed 17th June 2010].

50. Walls C. Spring in Focus. Greenwich, CT, USA: Manning; 2008.

51. Carmalt P, Elliot T. properJavaRDP web site [online]. Available from
http://properjavardp.sourceforge.net/ [Accessed 18th May 2010].

52. AT&T Research. Archive copy of the original VNC website [online]. Available from http://
www.hep.phy.cam.ac.uk/vnc_docs/index.html [Accessed 18th May 2010].

53. TightVNC web site [online]. Available from http://www.tightvnc.com [Accessed 18th May 2010].

54. Ort E, Mehta B. Java Architecture for XML Binding (JAXB) [online]. Available from
http://java.sun.com/developer/technicalArticles/WebServices/jaxb/ [Accessed 10th June 2010].

55. JiBX project web site [online]. Available from http://jibx.sourceforge.net/. [Accessed 10th June 2010]

56. Sosnoski D. JiBX 1.2, Part 1: Java code to XML schema [online]. Available from
http://www.ibm.com/developerworks/java/tutorials/j-jibx1/. [Accessed 11th June 2010].

57. Microsoft Corporation. PowerShell Management Library for Hyper-V [online]. Available from
http://pshyperv.codeplex.com/team/view [Accessed 15th May 2010].

58. Vaibhav/Sun Microsystems. Not as easy as we thought - PowerShell from Java Runtime [online].
Available from http://blogs.sun.com/vaibhav/entry/not_as_easy_as_we. [Accessed 16th May 2010].

59. JWBem Project web site [online]. Available from http://jwbem.sourceforge.net/. [Accessed 17th May
2010].

60. J-Interop Project web site [online]. Available from http://www.j-interop.org/. [Accessed 17th May
2010].

61. Sun Microsystems. Java Naming and Directory Interface (JNDI) [online]. Available from
http://java.sun.com/products/jndi/. [Accessed 20th May 2010].

62. stackoverflow.com. Forum thread: Authenticating against Active Directory with Java on Linux.
[online] Available from http://stackoverflow.com/questions/390150/authenticating-against-active-
directory-with-java-on-linux. [Accessed 17th May 2010]

63. UltraVNC project team. UltraVNC Repeater [online]. Available from
http://www.uvnc.com/addons/repeater.html [Accessed 18th May 2010].

64. Argyroudis P. Jumpgate web site [online]. Available from http://jumpgate.sourceforge.net [Accessed
20th May 2010].

65. Microsoft Corporation. How to use the Sysprep tool to automate successful deployment of Windows
XP [online]. Available from http://support.microsoft.com/default.aspx?scid=kb;en-us;302577
[Accessed 20th May 2010]

66. Microsoft Technet. The Soul of a Virtual Machine Blog: Sysprepping a virtual machine [online].
Available from http://blogs.technet.com/b/megand/archive/2005/01/20/357570.aspx [Accessed
23rd May 2010].

67. Clarke D. Workstation Name Changer [online]. Available from
http://mystuff.clarke.co.nz/MyStuff/wsname.asp [Accessed 23rd May 2010].

68. O'Reilly D. Workers' Edge: Shut down Windows in an instant [online]. Available from
http://www.cnet.com/8301-13880_1-9900788-68.html?part=rss [Accessed 24th May 2010]

69. DSDM Consortium. DSDM Atern Handbook. Whitstable, Kent, UK: Whitehorse Press; 2008. p105.

70. Pilone D. UML 2.0 Pocket Reference. O’Reilly; 2006. p72-73.

71. Ambler S. The Principles of Agile Modelling [online]. Available from
http://www.agilemodeling.com/principles.htm#ModelWithAPurpose [Accessed 19th August 2010].

72. Larman S. Applying UML and Patterns, Second Edition. New Jersey, USA: Prentice-Hall; 2002. p221-
226

73. Oracle. What is an interface? [online]. Available from
http://download.oracle.com/javase/tutorial/java/concepts/interface.html [Accessed 19th August
2010].

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 65	 September	 2010	

74. Oracle. Creating Objects [online]. Available from
http://download.oracle.com/javase/tutorial/java/javaOO/objectcreation.html [Accessed 19th August
2010].

75. ALT-C 2010 web site [online]. Available from http://www.alt.ac.uk/altc2010/ [Accessed 19th August
2010].

76. IMS Global Learning Consortium. Content Packaging Specification [online]. Available from
http://www.imsglobal.org/content/packaging/ [Accessed 19th August 2010].

77. Jorum website [online]. Available from http://www.jorum.ac.uk/ [Accessed 19th August 2010].

78. TightVNC project team. TightVNC Java Viewer with SSH Tunnelling [online]. Available from
http://www.tightvnc.com/ssh-java-vnc-viewer.php [Accessed 19th August 2010].

79. DSDM Consortium. DSDM Atern Project Approach Questionnaire [online]. Available from
http://www.dsdm.org/public/File/pdf/Atern%20Project%20Approach%20Questionnaire.xls
[Accessed 19th August 2010].

80. “Uncle Bob”. The Scatology of Agile Architecture. Object Mentor [online]. Available from
http://blog.objectmentor.com/articles/2009/04/25/the-scatology-of-agile-architecture [Accessed
19th August 2010].

81. Appleton B. JEDI Programming – Just Enough Design Initially. Agile Journal [online]. Available
from http://www.agilejournal.com/blogs/blogs/brad-appletons-acme-blog-mainmenu-77/2003-jedi-
programming-just-enough-design-initially [Accessed 19th August 2010].

82. Palmer S. Feature Driven Development: An Introduction [online]. Available from http://www.step-
10.com/SoftwareProcess/FeatureDrivenDevelopment/introduction.html [Accessed 19th August 2010].

83. Beck K et al. Principles Behind the Agile Manifesto [online]. Available from
http://www.agilemanifesto.org/principles.html [Accessed 19th August 2010].

84. Marton F, Booth S. Learning and Awareness. Marhwah, New Jersey, USA: Lawrence Erlbaum
Associates; 1997. p121.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 66	 September	 2010	

Appendix	 A	 –	 Metaphors	

The following metaphors were established at the start of the project. The intention was for these
to provide a common lexicon through the project, and also to supply an initial “mission”
statement for each project phase. The latter aspect is fleshed out and in some respect,
superseded by the artefacts of the Inception and Elaboration process.

Metaphor:	 Stage	 1	

We will build a system for the delivery of virtual machines to students to assist in the teaching
of advanced ICT subjects, reverse engineering the current VLab system using open solutions
and technologies so as to remove the current dependencies on Microsoft technology at both
server and client sides.

A student is allocated one or more virtual machines, pre-configured by the tutor. The
student is provided with a web-based front end from which they may access the system. This
front end will be accessible either from university equipment or remotely, accessible from as
many platforms and web browsers as is possible, and require zero configuration or software
installation on the student’s part.

Upon logging in, the student will be presented with a list of their virtual machines, and given
options to start or suspend any of them. If a machine is running, they may also connect to it,
which will produce a page in their web browser with the virtual machine’s console embedded.

The system will manage capacity by limiting concurrent connections. Each student may only
start a pre-defined, per student allocated number of virtual machines at a time. A student will
also be allocated a maximum amount of time that they can run lab sessions for; after this
period their sessions will be suspended and they will not be permitted to restart them until a
specified time has elapsed. A student may also not start a virtual machine if there is already
more than a maximum, per server amount running.

Metaphor:	 Stage	 2	

We will build a system that incorporates the features listed in Metaphor: Stage 1. Additionally,
there will be the ability for a student to create a booking. This is a period of runtime at a
specified, fixed time and date where they are guaranteed the ability to run a virtual machine.

The capacity management arrangements change slightly from that previously stated: The
system will manage capacity by limiting concurrent connections. Each student may only start
a pre-defined, per student allocated number of virtual machines at a time. Unless they have a
booking, a student will also be allocated a maximum amount of time that they can run lab
sessions for. After this period their sessions will be suspended and they will not be permitted to
restart them until a specified time has elapsed. A student may also not start a virtual machine
if the number of machines already running, plus the number of bookings at the current time
exceeds a maximum, per server amount.

Metaphor:	 Stage	 3	

We will build a system for the delivery of lab exercises to assist in the teaching of advanced
ICT subjects, building on the lessons learnt from the existing VLab system. The system will
follow the workshop paradigm often used in teaching these subjects, where conventional
lecturing is supplemented by workshop sessions; during such sessions students are set
practical tasks to complete that exercise the knowledge delivered.

A lab will contain a virtual machine. In this context a virtual machine means an exemplar
image, pre-configured by the tutor, containing both the software and data required by a
student to perform the lab exercise.

The system will provide an interface for a student to access the labs published to them by a
tutor. This interface will be web-based, accessible either from university equipment or
remotely, accessible from as many platforms and web browsers as is possible, and require

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 67	 September	 2010	

zero configuration or software installation on the student’s part. When a student attempts a
lab for the first time, the lab’s own virtual machine is used as the basis to clone a new, student
specific VM. This new VM belongs specifically to the student and is where they will perform the
tasks expected of them during the lab stage. As a student works through a lab, their progress
is recorded.

The student will be able to book a guaranteed lab session, as per Metaphor: Stage 2.

The system will manage capacity by limiting concurrent connections. Each student may only
start a pre-defined, per student allocated number of virtual machines at a time. Unless they
have a booking, a student will also be allocated a maximum amount of time that they can run
lab sessions for. After this period their sessions will be suspended and they will not be
permitted to restart them until a specified time has elapsed. A student may also not start a
virtual machine if the number of machines already running, plus the number of bookings at
the current time exceeds a maximum, per server amount.

Metaphor:	 Stage	 4	

We will build a system for the delivery of lab exercises to assist in the teaching of advanced
ICT subjects, building on the lessons learnt from the existing VLab system. The system will
follow the workshop paradigm often used in teaching such subjects, where conventional
lecturing is supplemented by workshop sessions; during such sessions students are set
practical tasks to complete that exercise the knowledge delivered.

A lab will consist of a series of lab stages. Each individual lab stage will include a tutor
virtual machine (VM). This is an exemplar VM image, pre-configured by the tutor,
containing both the software and data required by a student to perform this stage of the lab
exercise, representing the starting point of this lab stage. Lab stages also contain resources,
which take the form of static learning content relevant to the lab stage at hand. Resources are
displayed to the student alongside the virtual environment for the lab stage.
Lab stages will be ordered in a logical sequence that replicates the order that a subject expert
would follow if they were to attempt to complete the task themselves.

The system will provide an interface for a student to access the labs published to them by a
tutor. This interface will be web-based, accessible either from university equipment or
remotely, accessible from as many platforms and web browsers as is possible, and require
zero configuration or software installation on the student’s part. When a student accesses a lab
stage for the first time, the tutor VM of the lab stage will be used as the basis to create a new,
student specific VM. This new VM is where the student will perform the tasks expected of them
during the lab stage. Additionally, for each lab stage, the tutor may specify one or more URLs
to serve as the resources to be displayed alongside the VM console. As a student works through
a lab, their progress is recorded.

The student will be able to book a guaranteed lab session, as per Metaphor: Stage 2.

The system will manage capacity by limiting concurrent connections. A student will be
allocated a maximum amount of time that they can run lab sessions for; after this period their
sessions will be suspended and they will not be permitted to restart them for the time specified.
The student may create a booking, i.e. a specified period where they are guaranteed access.
The system will check such bookings to ensure that capacity is not exceeded; a student will not
be permitted to make a booking if other students have already done so up to this capacity.

Metaphor:	 Stage	 5	

From the student’s perspective, the system will provide the features outlined in Metaphor:
Stage 4.

From the tutor’s perspective, we will build an additional sub-system to allow for the
management of students, labs, lab stages, tutor virtual machines (VMs) and
resources. The definitions of these terms are, again, as per Metaphor: Stage 4.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 68	 September	 2010	

A tutor may create or edit a lab. A screen will prompt them to choose from a number of
existing lab stages that will comprise the lab. They can then list the students they wish to
publish the lab to.

A tutor may create or edit a lab stage. A screen will prompt them to choose from a number of
existing tutor VMs. For each lab stage one VM must be chosen to serve as its starting point.

A tutor may create or edit a tutor VM. A screen will prompt them to choose from the virtual
machines that currently exist on the virtualisation backend. They may select an existing tutor
VM or alternatively, a backend VM. A backend VM is a virtual machine that exists solely on
the virtualisation backend. They are created by a System Administrator, using the tools
available via the virtualisation backend. They may only be edited using these tools and are not
editable by tutors – they are intended to provide a foundation for a tutor to create tutor VMs.

When a tutor chooses a virtual machine it is cloned. The tutor is then connected to the new
clone, and they may tailor it to suit their needs. These needs may be dictated by the
requirements of a specific lab stage; alternatively, a tutor may wish to author a VM solely to
provide a pre-configured starting point for their future VMs (and thus avoid repeating the
same configuration tasks every time they author a lab).

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 69	 September	 2010	

Appendix	 B	 –	 Use	 cases	

Subfunctions are shown in bold, whereas links to other use cases are shown underlined.

Initial	 use	 cases	

See section 4.1.1, Initial use cases, for further detail and discussion of the following.

Initial	 Use	 Cases	 –	 Stage	 1	

Use
Case No

Use Case Name Actor Project
Stage

Priority

1 Change Virtual Machine State Student 1 M

• The student logs into the system.
• The virtual machines are listed, together with their current state – either started,

suspended or stopped.
• The student selects to change the VM’s state:

o If the VM is currently stopped or suspended, they may start the VM.
o If the VM is currently started, they may suspend the VM.

o The student may only completely shut down the VM from the VM’s
console.

Alternative flows/exceptions:
• A virtual machine was previously suspended by the system as per use case #3, Shut

down idling VMs, and the permitted time to restart has not yet elapsed:
o the option to start the machine is suppressed and a prompt explains why

• There are already more than the defined maximum amount of VMs in the started state

o The option to start the machine is suppressed and a prompt explains why

Use
Case No

Use Case Name Actor Project
Stage

Priority

2 Connect to running virtual machine Student 1 M

• The student logs into the system.
• The virtual machines are listed, together with their current state – either started,

suspended or stopped.
• The student selects a virtual machine from the list to connect to.
• The student’s browser displays the VM console.

Alternative flows/exceptions:
• The connection to the VM is unsuccessful:

o an appropriate error message is displayed

Use
Case No

Use Case Name Actor Project
Stage

Priority

3 Shut down idling VMs System 1 M

• Each minute, the system polls all running VMs
• If a VM has been in the “started” state for a period of time greater than that permitted to

its owning student, it is suspended.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 70	 September	 2010	

Initial	 Use	 Cases	 –	 Stage	 2	

Use
Case No

Use Case Name Actor Project
Stage

Priority

4 Book Lab Session Student 2 M

• The student logs into the system.
• The student selects “book lab session”.
• The student is shown a calendar
• The student may choose a date and time from the calendar.

o periods where there are already bookings that will equal or exceed defined server
capacity are marked as unavailable.

• This date and time is allocated to the student as a guaranteed period where they will be
able to start and access a VM, regardless of any other considerations.

Use
Case No

Use Case Name Actor Project
Stage

Priority

1 v2 Change Virtual Machine State Student 2 M

• The student logs into the system.
• The virtual machines are listed, together with their current state – either started,

suspended or stopped.
• The student selects to change the VM’s state:

o If the VM is currently stopped or suspended, they may start the VM.
o If the VM is currently started, they may suspend the VM.

o The student may only completely shut down the VM from the VM’s
console.

Alternative flows/exceptions:
• The student attempts to change the machine state but is unsuccessful:

o an appropriate error message is displayed

• A virtual machine was previously suspended by the system as per use case #3, Shut

down idling VMs, and the permitted time to restart has not yet elapsed:
o the option to start the machine is suppressed and a prompt explains why, unless

the current time/date corresponds with a previously booked lab session for this
student.

• If the current number of started VMs plus the number of bookings for the current

time/date is greater than the defined amount:
o The option to start the machine is suppressed and a prompt explains why, unless

the current time/date corresponds with a previously booked lab session for this
student.

Use
Case No

Use Case Name Actor Project
Stage

Priority

3 v2 Shut down idling VMs System 2 M

• Each minute, the system polls all running VMs
• If a VM has been in the “started” state for a period of time greater than that permitted to

its owning student, it is suspended, unless its owning student has a previously booked lab
session.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 71	 September	 2010	

Initial	 Use	 Cases	 –	 Stage	 3	

Use
Case No

Use Case Name Actor Project
Stage

Priority

5 Do lab Student 3 S

• The student logs into the system.
• The server checks for a booking and/or whether current server capacity can

accommodate them.
• The student is presented with the list of lab exercises available to them and invited to

select one.
• At this point, a “lab exercise” is simply a base virtual machine image.
• When one is selected, the student is connected to it:

o The system checks to see if a virtual machine already exists for this student/lab
combination. If not:

o A VM is cloned from the lab’s base image.
o The new VM is given a unique name and allocated to the student.

o The student’s VM is started.
o The student may then connect to the lab. The lab’s VM console is displayed in

the student’s web browser.
• When the student has finished the lab

o The VM is suspended.

Alternative flows/exceptions:
• Server is already at maximum capacity on login (i.e. the student has not booked a

session, and concurrent usage plus current bookings is equal to or greater than the set
max):

o an appropriate error message is displayed
o the student is invited to book a lab session instead.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 72	 September	 2010	

Initial	 Use	 Cases	 –	 Stage	 4	

Use
Case No

Use Case Name Actor Project
Stage

Priority

5 v2 Do lab Student 4 C

• The student logs into the system.
• The server checks for a booking and/or whether current server capacity can

accommodate them.
• The student is presented with the list of lab exercises available to them and invited to

select one.
o A lab consists of a series of stages. Each stage consists of:

o A single virtual machine designed by the tutor (a “tutor VM”)
o One or more “resources” in the form of a web page URL

• When one is selected:
o The system checks to see if the student has already undertaken this lab. If so,

the initial stage is set to be wherever they left off. If not, the initial stage is set to
be the first of the lab.

o The system checks to see if a virtual machine already exists for this student/lab
stage combination. If not:

o A VM is cloned for them from the tutor VM.
o The new VM is given a unique name and assigned to the student.

o The student’s VM for this lab stage is started.
o The system displays the VM console for the newly created VM, alongside the

contents of the resource web site(s).
o The student may navigate between the web resources.
o The student may navigate to a different lab stage. This will prompt the same

check as previously to see whether an appropriate VM already exists, and a new
one will be created if not.

Alternative flows/exceptions
• Server is already at maximum capacity on login (i.e. the student has not booked a

session, and concurrent usage plus current bookings is equal to or greater than the set
max):

o an appropriate error message is displayed
o the student is invited to book a lab session instead.

Initial	 Use	 Cases	 –	 Stage	 5	

Use
Case No

Use Case Name Actor Project
Stage

Priority

6 Create/edit lab stage Tutor 5 C

• The tutor is presented with a list of lab stages. They may select an existing one to edit,
or create a new one.

• The tutor is presented with a list of tutor VMs.
o The list can be filtered.
o If a new VM is required, a route to create a new tutor VM is available

• The tutor selects a VM to be the lab stage’s base
• The tutor enters one or more web URLs as resources for the stage
• The tutor modifies metadata for the stage
• The tutor may save or discard the stage.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 73	 September	 2010	

Use
Case No

Use Case Name Actor Project
Stage

Priority

7 Create/edit a tutor VM Tutor 5 C

• The tutor is presented with the current list of tutor VMs. They can choose one to edit, or
create a new one.

o The list can be filtered.
• If they create a new one:

o The tutor is presented with the current list of backend system VMs.
o The tutor selects an existing VM to be the base for their new one
o A new VM is dynamically created using the existing one as a base.

• The chosen VM, or the newly created clone, is started and a console connection
established (via the existing Display VM console functionality).

• The tutor tailors the new VM to suit their needs. During this stage:
o The tutor may take a snapshot of the VM’s current state
o The VM may revert the VM’s state back to the snapshot, if one is present.

• The tutor edits metadata for the VM.
• The tutor shuts down the new VM, which is now ready to be used as a start point for a lab

stage.

Use
Case No

Use Case Name Actor Project
Stage

Priority

8 Create/edit lab Tutor 5 C

• The tutor is presented with a list of existing labs, from which they are invited to select
one. Or they may instead choose to create a new blank lab.

o The list can be filtered.
• The tutor is presented with a list of lab stages:

o The list can be filtered.
• The tutor may add, remove or re-order (modify) stages in the lab.
• The tutor adds metadata for the lab.
• The tutor may save or discard the lab.

Use
Case No

Use Case Name Actor Project
Stage

Priority

9 Publish lab to students Tutor 5 C

• The tutor is presented with a list of existing labs, from which they are invited to select
one. Or they may instead choose to create a new blank lab.

o The list can be filtered.
• The tutor is presented with a list of students.

o The list can be filtered
• The tutor may add, remove or re-order students who may access the lab.

NB: This use case is obsoleted by changes that were generated during the Elaboration
phase.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 74	 September	 2010	

Updates	 to	 use	 cases	 generated	 during	 the	 Elaboration	 stage	

Use
Case No

Use Case Name Actor Project
Stage

Priority

3 v3 Shut down idling VMs System 2 M

• Each minute, the system polls all running VMs
• If a VM has been in the “started” state for a period of time greater than that permitted to

its owning student, all of the student’s currently running VMs are suspended, unless its
owning student has a previously booked lab session.

Use
Case No

Use Case Name Actor Project
Stage

Priority

5 v3 Do lab Student 4 C

• The student logs into the system.
• The server checks for a booking and/or whether current server capacity can

accommodate them.
• The student is presented with the list of lab exercises available to them and invited to

select one.
o A lab consists of a series of stages. Each stage consists of:

o A single virtual machine designed by the tutor (a “tutor VM”)
o One or more “resources” in the form of a web page URL

• When one is selected:
o The system checks to see if the student has already undertaken this lab. If so,

the initial stage is set to be wherever they left off. If not, the initial stage is set to
be the first of the lab, and the progress status flag for each lab stage is set to “Not
started yet.”

o The system checks to see if a virtual machine already exists for this student/lab
stage combination. If not:

o A VM is cloned for them from the tutor VM.
o The new VM is given a unique name and assigned to the student.

o The student’s VM for this lab stage is started.
o A snapshot of the VM’s starting point is taken.
o The system displays the VM console for the newly created VM, alongside the

contents of the resource web site(s).
o The student is shown their progress status flag for this lab stage, and may Set

progress flag for lab stage.
o The student may navigate between the web resources.
o The student may take a snapshot of the VM’s current state
o The student may revert (to snapshot) the VM’s state back to the snapshot, if

one is present.
o The student may revert (to snapshot) the VM’s state back to the start point

snapshot.
o The student may navigate to a different lab stage. This will prompt the same

check as previously to see whether an appropriate VM already exists, and a new
one will be created if not.

Alternative flows/exceptions
• Server is already at maximum capacity on login (i.e. the student has not booked a

session, and concurrent usage plus current bookings is equal to or greater than the set
max):

o an appropriate error message is displayed
o the student is invited to book a lab session instead.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 75	 September	 2010	

	
Use
Case No

Use Case Name Actor Project
Stage

Priority

8 v2 Create/edit lab Tutor 5 C

• The tutor is presented with a list of existing labs, from which they are invited to select
one. Or they may instead choose to create a new blank lab.

o The list can be filtered.
• The tutor is presented with a list of lab stages:

o The list can be filtered.
• The tutor may add, remove or re-order (modify) stages in the lab.
• The tutor adds metadata for the lab.
• The tutor edits the student list for the lab.
• The tutor may save or discard the lab.

Comments:
The previously distinct use case 9 has been integrated into this revision of use case 8.

Use
Case No

Use Case Name Actor Project
Stage

Priority

6 v2 Create/edit lab stage Tutor 5 C

• The tutor is presented with a list of lab stages. They may select an existing one to edit,
or create a new one.

• The tutor is presented with a list of tutor VMs.
o The list can be filtered.
o If a new VM is required, a route to create a new tutor VM is available

• The tutor selects a VM to be the lab stage’s start point
• The tutor may select a VM to be the lab stage’s end point
• The tutor enters one or more web URLs as resources for the stage
• The tutor modifies metadata for the stage
• The tutor may save or discard the stage.

	
	
	

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 76	 September	 2010	

Appendix	 C	 –	 Screen	 Mockups	

Screen	 mockups	

The first “prototype” delivered to the user community during the elaboration phase was the
following series of screen mockups. These were used to describe the expected functionality that
would be delivered during each development stage, and to illustrate to the user community how
the final application might work.

Phase	 1	

It is assumed that login has already taken place. Thus, this is the first screen seen by the
student:

Figure 31 – initial post-login screen mockup

This is similar in some respects to the current VLab system. However, in contrast to the current
VLab system which displays all VMs regardless, the expectation is that WLab will only display
VMs relevant to (i.e. owned by) the student who is logged in.

There is also a paradigm shift versus VLab in that each student now has labs, rather than a
single VM object that they can stop and start. This is a foreshadowing of the composite learning
object that is the ultimate objective of WLab. However, at this stage a “lab” will just be a virtual
machine. However, a student may have many labs (in contrast to VLab where each student has
only a single VM).

The mockup also extends the information displayed to the student by providing appropriate
metadata for each lab. Without such metadata, a student would find it very hard to know which
lab was which.

As is the case on the current system, the student may start a stopped or suspended lab, and
suspend a started lab. Or, a final option at the bottom of the page invites them to log out. Any
running labs will continue to run if not suspended or shut down before logout.

Welcome to WLab. Explanatory text, system announcements, message of the day will appear here. Lorem ipsum dolor sit
amet, consectetur adipiscing elit. Maecenas at arcu quam. Nulla ac lacus lacus. Nulla suscipit feugiat velit, et tristique sapien
suscipit sed. Ut congue nunc nec odio ultricies sit amet lobortis sapien mollis. In interdum venenatis nulla, id congue ligula
iaculis sagittis. Etiam commodo aliquet ultricies.

WLab @ Kingston University

Welcome, Fred! You can use the following labs:

Electronic Commerce Technologies ASP.NET and AJAX
Electronic Commerce Technologies Maps and Mashups
Electronic Commerce Technologies General lab work

CIM124

CIM124
CIM124

1
2
3

Programming in Java Introduction to Java
Programming in Java General development envi...CIM456

CIM456 2
3

Suspended
Suspended
Running
Stopped
Stopped

Start
Start
Suspend | Connect
Start
Start

Course name and number Lab name and number Status

Click here to log out.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 77	 September	 2010	

Figure 32 – server at maximum capacity mockup

The screen above shows the same user interface, but in the scenario where the server is already
at maximum capacity. In this instance, any options to start labs are suppressed. Any currently
running labs would still present the option to suspend or to connect to their console.

A similar screen would appear with the alternative text

Sorry! You may not start any more labs at the moment because you are already
running your maximum number of concurrent sessions.

in the appropriate circumstance.

Figure 33 – auto-suspended labs mockup

The screen above indicates what the student sees if labs are left running for more than the
allotted runtime. The labs will be automatically suspended by the system, and the option to
restart the labs suppressed until an appropriate time has elapsed.

Welcome to WLab. Explanatory text, system announcements, message of the day will appear here. Lorem ipsum dolor sit
amet, consectetur adipiscing elit. Maecenas at arcu quam. Nulla ac lacus lacus. Nulla suscipit feugiat velit, et tristique sapien
suscipit sed. Ut congue nunc nec odio ultricies sit amet lobortis sapien mollis. In interdum venenatis nulla, id congue ligula
iaculis sagittis. Etiam commodo aliquet ultricies.

WLab @ Kingston University

Welcome, Fred! You can use the following labs:

Electronic Commerce Technologies ASP.NET and AJAX
Electronic Commerce Technologies Maps and Mashups
Electronic Commerce Technologies General lab work

CIM124

CIM124
CIM124

1
2
3

Programming in Java Introduction to Java
Programming in Java General development envi...CIM456

CIM456 2
3

Suspended
Suspended
Running
Stopped
Stopped

Suspend | Connect

Course name and number Lab name and number Status

Click here to log out.

Sorry! You may not start any more labs at the moment due to insufficient server capacity.

Welcome to WLab. Explanatory text, system announcements, message of the day will appear here. Lorem ipsum dolor sit
amet, consectetur adipiscing elit. Maecenas at arcu quam. Nulla ac lacus lacus. Nulla suscipit feugiat velit, et tristique sapien
suscipit sed. Ut congue nunc nec odio ultricies sit amet lobortis sapien mollis. In interdum venenatis nulla, id congue ligula
iaculis sagittis. Etiam commodo aliquet ultricies.

WLab @ Kingston University

Welcome, Fred! You can use the following labs:

Electronic Commerce Technologies ASP.NET and AJAX
Electronic Commerce Technologies Maps and Mashups
Electronic Commerce Technologies General lab work

CIM124

CIM124
CIM124

1
2
3

Programming in Java Introduction to Java
Programming in Java General development envi...CIM456

CIM456 2
3

Suspended
Suspended
Running
Stopped
Stopped

1:37 until start allowed
0:17 until start allowed
Suspend | Connect
Start
Start

Course name and number Lab name and number Status

Click here to log out.

You have labs which were left running and were closed down by the system after 4 hours. You cannot restart these labs until
this period has elapsed.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 78	 September	 2010	

Figure 34 – the “in-lab” screen mockup

Finally, the screen above shows the proposed UI for when a student connects to a running lab
session. The console of the virtual machine will be embedded within a web page that also shows
the lab course details and title, and the remaining runtime available. The student is given the
option to suspend the lab or to disconnect from the lab and return to the previous menu screen.

Phase	 2	

Phase 2 simply adds the ability for the student to book a guaranteed slot of lab time. All other
features are unchanged.

Figure 35 – “booking a session” mockup

A student may book up to a defined number of hour-long sessions. The student may wish to
allocate these in a sequential block or blocks to give a long guaranteed period of work, or they
may choose to use them individually and have more regular albeit shorter work periods.

WLab @ Kingston University
You are running CIM 124: Electronic Commerce Technologies, #3 General Lab Work

This lab will be automatically suspended in 2 hours and 12 minutes.
Suspend Lab | Disconnect from lab and return to main menu (leaves the lab running)

WLab @ Kingston University

You can book a lab session using the calendar below. Times marked in RED are unavailable. Slots allocated to you will
appear in green. You may book up to 8 hour slots in advance - you currently have 8 such slots booked.

<< Now >>

Monday
 17th May

Tuesday
 18th May

Wednesday
 19th May

Thursday
 17th May

Friday
 18th May

Saturday
 19th May

Sunday
 20th May

Next Week >><< Previous Week Go to date

0000
0100
0200
0300
0400
0500
0600
0700
0800
0900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300

Confirm booking Cancel

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 79	 September	 2010	

Times that are not available – e.g. if other students have already make bookings to capacity –
are marked in red. The student’s own bookings are marked in green. Appropriate navigation
options are provided to move to a specific data, and if the currently displayed week intersects
the current time/date, this is also displayed.

Apart from the provision of this calendar-based booking screen, for the most part this is
expected to be the only addition to the UI in stage 2, apart from a link to the booking form on
the “main” student screen.

Phase	 3	

Stage 3 does not require changes to the UI – the introduction of dynamically created virtual
machines is a backend feature and will not change any user-facing aspects of the application.

Phase	 4	

Phase 4 introduces the concept of labs comprised of stages, with a stage consisting of a tutor VM
and a number of accompanying web resources. Considerable changes will be required in the lab
connection screen to accommodate this new concept:

Figure 36 – the “in-lab” screen mockup

including lab stages and resources

Use case 5 v2 indicates that the virtual machine and the web resource(s) should be displayed
side-by-side. The mockup above shows how this would look. One issue that can be anticipated is
the difficulty in fitting a VM console and other resources onto the same screen and provide
adequate room to work in either. For this reason, the intention is that the resource pane will be
collapsible, thus:

This lab will be automatically suspended in 2 hours and 12 minutes.
Suspend Lab | Disconnect from lab and return to main menu (leaves the lab running)

Stage 3

The objective in stage 3 of this
lab is to write the
updateTimeLimitMaxMin
method.

You will need to lorem ipsum
dolor sit amet, consectetur
adipiscing elit. Maecenas at
arcu quam. Nulla ac lacus
lacus:

• Nulla suscipit feugiat
velit,

• et tristique sapien
suscipit sed.

• Ut congue nunc nec
odio ultricies sit amet
lobortis sapien mollis.

In interdum venenatis nulla, id
congue ligula iaculis sagittis.
Etiam commodo aliquet
ultricies.

stage 1 - stage 2 - stage 3 - stage 4 - stage 5

<<

WLab @ Kingston University
You are running CIM 124: Electronic Commerce Technologies, #6 Time Limits
Stage 3 - create Update Time Limits method
This lab stage is In Progress. Click here to set its status to finished.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 80	 September	 2010	

Figure 37 - the “in-lab” screen mockup with resource pane collapsed

Clicking the divider will either collapse or display the resource pane, and thus give room to work
in the console.

One key aspect here is the ability for the student to move from stage to stage. This is achieved by
clicking on the links underneath the VM console. The currently running stage is highlighted in
bold black text. Stage 1 in the example is shown in green, which indicates that it has been
completed by the student.

The concept of stage “completion” arises from the two different reasons why a student may
navigate to another stage:

1. They have completed all the tasks required of them, and simply want to move on to the
next part of the lab exercise.

2. They are “stuck”, and will need the solution to the current problem in order to be able to
move on within a useful timescale.

To accommodate this, WLab will introduce the concept of stage “progress”. Three such statuses
are proposed:

1. Not started yet
2. In progress
3. Finished

The first of these indicates that a student has yet to commence this part of the exercise; the
other two are self-explanatory. When the student connects to a lab stage for the first time, it is
automatically set to “In progress”. When they feel they have finished the stage, they can set its
status to “Finished”.

WLab @ Kingston University
You are running CIM 124: Electronic Commerce Technologies, #6 Time Limits

This lab will be automatically suspended in 2 hours and 12 minutes.
Suspend Lab | Disconnect from lab and return to main menu (leaves the lab running)

Stage 3 - create Update Time Limits method

<<

stage 1 - stage 2 - stage 3 - stage 4 - stage 5

This lab stage is In Progress. Click here to set its status to finished.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 81	 September	 2010	

Phase	 5	

Phase 5 of development is concerned with providing a management interface that allows tutors
to manipulate lab, lab stage and tutor VM objects:

Create/edit	 lab	

Figure 38 – create/edit lab screen mockup #1

The tutor is prompted to select an existing lab to edit, or they may create a new one. The list of
labs can be filtered using pull down menus.

Upon selecting a particular lab, the tutor will see the following screen. Creating a lab would
result in the same screen, except it would have no existing values in the metadata fields, and no
lab stages would be selected:

Figure 39 – create/edit lab screen mockup #2

A number of metadata fields are provided so that this lab can be distinguished from others.

The tutor adds a stage from the left hand pane to the lab by highlighting it in the “Available lab
stages” pane and clicking the >> button. Similarly, a stage can be removed by highlighting it in

WLab @ Kingston University

Edit a Lab:

Choose a lab from the list below to edit, or you may Create a new Lab.

Electronic Commerce Technologies ASP.NET and AJAX
Electronic Commerce Technologies Maps and Mashups
Electronic Commerce Technologies General lab work

CIM124

CIM124
CIM124

1
2
3

Programming in Java Introduction to Java
Programming in Java General development envi...CIM456

CIM456 2
3

Course name and number Lab name and number

Filter by Course:

Tutor
Luke Hebbes
David Livingstone
Luke Hebbes
David Livingstone
David Livingstone

(no filter)

Filter by Tutor: (no filter)

WLab @ Kingston University

Edit a Lab:
ASP.NET and AJAXLab/Workshop Name: Luke HebbesTutor Name:

Choose from the list of stages below to add them to this lab, or Create a new lab stage.

>>

<<

Debugging Java code
Introduction to JSP
Introduction to Swing
The MVC pattern

Stage name Tutor
David Livingstone
David Livingstone
David Livingstone
David Livingstone
Luke Hebbes

Filter by Tutor: (no filter)

The Unbearable Lightness of Bill Gates

Available Lab Stages: Selected Lab Stages:

ASP.NET and AJAX
Maps and Mashups
General lab work

Workshop name and number Tutor
Luke Hebbes
David Livingstone
Luke Hebbes

1
2
3

X

X

X

Electronic Commerce TechnologiesCourse Name: CIM142Course Number:

Students:

KU929923, KU46347, KU28238, KU38281, KU67457, KU29394, KU13823, KU29394

Save changes Cancel

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 82	 September	 2010	

the “Selected lab stages” pane and clicking the << button. Stages can be re-ordered by
modifying their number; the “Selected lab stages” pane will update to reflect any new order.
When the lab is delivered to the student, the stages will appear in this order.

The decision has been made to integrate use case 9, Publish lab to students with this screen.
Upon further reflection it seems of little value to make this a distinct function. Therefore, this
use case will take the form of a simple field added to the above screen into which student IDs
can be entered. The act of adding a student ID to this field will immediately publish the lab to
them.

When the tutor has finished making changes to the lab, they can either Confirm Changes or
Cancel.

Create/Edit	 Lab	 Stage	

The screen that follows shows the UI for use case 6, Create/Edit Lab Stage. If editing an
existing stage, the tutor will select from a listing in the same way as shown for labs in Figure 38.
When editing an existing lab stage, the fields in the screen shown will be populated; when
creating a new lab stage the fields will appear blank in the first instance.

Figure 40 – create/edit lab stage screen mockup

The tutor supplies a name for the stage. The course name and course number are not editable
fields – they will be populated if the stage has previously been allocated to a lab.

The tutor is provided with a list of virtual machines, and they may select one that will form the
basis of the lab stage. Note that this list consists only of tutor VMs. This is not the full
list of VMs present on the virtualisation backend.

Finally, the tutor can provide a list of web URLs to be used as the accompanying resources for
the stage. These are simply entered into the appropriate field and separated with commas.

When the tutor is finished, they select Confirm changes, or Cancel.

WLab @ Kingston University

Edit a Lab Stage:
update panels example stage 1Stage Name: Luke HebbesTutor Name:

Choose from the list of Virtual Machines below to use it as a base image for this lab, or Create a new VM.

Java workshop 1.1
Java workshop 1.2
Java workshop 1.3
ECT mashups workshop 1.1

Virtual Machine Name Creator
David Livingstone
David Livingstone
David Livingstone
David Livingstone
Luke Hebbes

Filter by Tutor: (no filter)

ECT workshop 3.1 - AJAX

Available Virtual Machines:

<< unallocated >>Lab Name: << unallocated >>Course Number:

Confirm changes Cancel

Date/Time created
13/4/10 11:37
14/4/10 12:07
16/4/10 14:12
17/4/10 19:13
20/4/10 08:01

Currently used in...
Programming in Java
<< none >>
Programming in Java
<< none >>
Electronic Commerce Technolog...

Resources: (separate with commas)
http://www.university.ac.uk/blah/someStuff.html, http://www.wikipedia.org/wiki/Virtual_Machine

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 83	 September	 2010	

Create/edit	 tutor	 VM	

Figure 41 - Create/edit tutor VM screen mockup

The screen above shows the UI presented to a tutor when they invoke use case 7, Create a
tutor VM. The tutor is prompted for a name for the VM. In contrast to previous lists, this
list of VMs will be a complete list straight from the virtualisation backend (but will
include existing tutor VMs). Clicking a VM and selecting Create and start VM will clone the VM
and start up the new version. The tutor will then be given access to the console of the new VM:

Figure 42 - working in the tutor VM console

At this point, the tutor would tailor the VM as required, e.g. install software, data, etc. The tutor
might be authoring with a specific stage of a lab in mind, or they may just be authoring a VM
that might be used as a “template” for future VMs.

Some functionality from the student “in-lab” console is re-used here; the area previously used to
display a stage’s static resources can be used to display helpful information to aid the VM
authoring process.

When the VM has been correctly set up, the tutor may click Return to list of VMs.

WLab @ Kingston University

Create a tutor VM:
JAXB development environmentNew VM Name: David LivingstoneTutor Name:

Choose from the list of Virtual Machines below to use it as a base image for your VM.

Base Java Development
Windows 2008 R2 Server
Basic XP VM
Windows 2003 Server

Virtual Machine Name

Basic Windows 7 Pro VM

Existing Virtual Machines:

Create and start VM Cancel

Java workshop 1.3
ECT mashups workshop 1.1
ECT workshop 3.1 - AJAX

WLab @ Kingston University
You are creating a new tutor VM

Return to list of VMs

JAXB development enviromentVirtual Machine Name: David LivingstoneTutor Name:

Base Java DevelopmentVM based on:

Important notes

It is crucial that your virtual
machine is left in a state that
is safe for clones to be
created.

If this is a Windows VM,
before it can be used in labs
you will need to run sysprep
on it. This should be your final
action before shutting the
machine down. Further
documentation can be found
here.

<<

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 84	 September	 2010	

Modifications	 during	 the	 Elaboration	 period	
	
In Figure 33 the two suspended labs have different periods after which they can be restarted.
User feedback during Elaboration noted that this was not the requirement – the maximum
runtime period is per student, not per lab. This screen mockup will need to be altered
accordingly:

Figure 43 - auto-suspended labs mockup (second iteration)

User feedback also noted the importance of an “end point VM” attribute as well as a start point
– see 4.2.2, Updates to Inception artefacts generated by user feedback during Elaboration.

Figure 40 changes as follows:

Figure 44 - create/edit lab stage screen mockup (second iteration)

The assumption is that the tutor will highlight a target virtual machine, then click on the field
next to the “start point VM” or “end point VM” in order to set these fields. If no end point VM is
specified, the lab stage’s end point is assumed to be the next stage’s start point.
	

Welcome to WLab. Explanatory text, system announcements, message of the day will appear here. Lorem ipsum dolor sit
amet, consectetur adipiscing elit. Maecenas at arcu quam. Nulla ac lacus lacus. Nulla suscipit feugiat velit, et tristique sapien
suscipit sed. Ut congue nunc nec odio ultricies sit amet lobortis sapien mollis. In interdum venenatis nulla, id congue ligula
iaculis sagittis. Etiam commodo aliquet ultricies.

WLab @ Kingston University

Welcome, Fred! You can use the following labs:

Electronic Commerce Technologies ASP.NET and AJAX
Electronic Commerce Technologies Maps and Mashups
Electronic Commerce Technologies General lab work

CIM124

CIM124
CIM124

1
2
3

Programming in Java Introduction to Java
Programming in Java General development envi...CIM456

CIM456 2
3

Suspended
Suspended
Suspended
Stopped
Stopped

Course name and number Lab name and number Status

Click here to log out.

You have labs which were left running and were closed down by the system after 4 hours. You cannot start any labs until this
period has elapsed, which will be in 1 hour and 37 minutes.

WLab @ Kingston University - Edit a Lab Stage

update panels example stage 1Stage Name: Luke HebbesTutor Name:

Choose from the list of Virtual Machines below to use it as a base image for this lab, or Create a new VM.

Java workshop 1.1
Java workshop 1.2
Java workshop 1.3
ECT mashups workshop 1.1

Virtual Machine Name Creator
David Livingstone
David Livingstone
David Livingstone
David Livingstone
Luke Hebbes

Filter by Tutor: (no filter)

ECT workshop 3.1 - AJAX

Available Virtual Machines:

<< unallocated >>Lab Name: << unallocated >>Course Number:

Confirm changes Cancel

Date/Time created
13/4/10 11:37
14/4/10 12:07
16/4/10 14:12
17/4/10 19:13
20/4/10 08:01

Currently used in...
Programming in Java
<< none >>
Programming in Java
<< none >>
Electronic Commerce Technolog...

Resources: (separate with commas)
http://www.university.ac.uk/blah/someStuff.html, http://www.wikipedia.org/wiki/Virtual_Machine

Lab Stage start point VM:
Lab Stage end point VM:

Java workshop 1.2
<< none >>

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 85	 September	 2010	

Appendix	 D	 –	 Development	 logs	 and	 analysis	 of	 work	 done	
during	 sprints	

Sprint	 1	

Excellent progress was made during the first development sprint, and the prototype delivered
included the features and use cases specified for both phases 1 and 2 – a week ahead of the
expected schedule.

Upon logging into the system, a student sees the screen in Figure 45:

Figure 45 – initial post-login screen for phase 1

There are a number of small differences between this and the proposed screen mockup for this
point, as seen back in Figure 31. The original mockup indicated that the student would be
presented with their list of labs, not a list of virtual machines. However, at this stage there is no
difference between them and given the lab paradigm which will be introduced later, i.e. a “lab”
consisting of a number of virtual machine states plus associated static resources, it was felt best
to use the “virtual machine” terminology to avoid later confusion, and to approximate the
current VLab system as closely as possible.

Starting a virtual machine results in the screen changing as seen in Figure 46:

Figure 46 – post-login screen with VM started (phase 1)

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 86	 September	 2010	

As outlined in the elaboration stage, each student has a period of allocated runtime, after which
their running virtual machines will be suspended, and they will be prevented from restarting
them for a period specified by the administrator.

Connecting to a virtual machine results in Figure 47:

Figure 47 – connecting to a VM

This is almost identical to that indicated by the screen mockup in Figure 34. One addition is the
ability to Resize console display, which allows a student to reduce the size of the virtual machine
console (at the price of reducing detail). This was an addition made to reduce the problems
introduced by embedding the virtual machine console within a web page at a fixed size. In
contrast to the current VLab system – where the destination VM is displayed to occupy the
entire client screen – this means that on smaller client screens the student will have to scroll the
browser page in order to see the entire VM desktop. Even on larger screens, some screen real
estate is used up by the time remaining countdown, and in later phases where the lab paradigm
is implemented this screen will get even busier. Therefore, the ability to scale the VM console
display was seen as an important and highly needed additional feature.

When the student suspends all their VMs, their “main” screen will look like Figure 48. This is
analogous to Figure 33 and its modified cousin, Figure 43:

Figure 48 – waiting for the interregnum period to elapse

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 87	 September	 2010	

Here, the options to start the virtual machines is suppressed, and instead a countdown given
indicating the period after which VMs may be started. Such an interregnum period occurs if the
student leaves their VMs running too long and they are automatically suspended by the system;
the exact duration can be specified by the system administrator and is system wide.

However, this behaviour was expanded after a discussion with the user community. The
discussion examined the scenario whereby a student might avoid the automatic suspension by
running their VMs until just before the automatic shut off point, shutting them down briefly,
then restarting them – thus clearing their “clock”. In the early stages of development, the first
approach was to impose the same interregnum period on all students regardless of their run
time. Thus, if a student had a two hour runtime period, the moment they started a VM, this
clock would start running. Once it elapsed, any running VMs would be suspended and they
would be subject to the interregnum regardless of whether their VMs ran for the entire runtime
period. However, this was perceived to both draconian and potentially confusing for students. A
student who briefly logged in for a minute or two would be subjected to the interregnum period
potentially several hours later – such a student would not necessarily immediately comprehend
why this was the case.

The user community suggested using a pro-rata approach. If a student uses up their entire
runtime period, then they are subjected to the entire interregnum period. Otherwise,
immediately after shutting all their VMs down they are subjected to an adjusted interregnum
period proportional to the amount of runtime used. Table 5 illustrates this:

Student’s maximum
runtime

Maximum
interregnum period

Student’s actual
runtime

Actual interregnum
period

2 hours 30 minutes 2 hours 30 minutes
2 hours 30 minutes 1 hour 15 minutes
2 hours 30 minutes 15 minutes 3 minutes, 45

seconds
Table 5 – interregnum period examples

Thus, a student who “pops on” briefly will still be subjected to an interregnum period, but it will
occur immediately after they conclude their activities (as opposed to what may seem like a
“random” point in the future), and it will be of a very short duration. Students who run right up
to the end of their runtime and who log off just before its end will be subject to almost the full
interregnum period.

Finally, the screen in Figure 49 shows the system in a state where the number of currently
running VMs is equal to or greater than the maximum defined amount. This is analogous to the
screen mockup in Figure 32:

Figure 49 – system at capacity

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 88	 September	 2010	

The booking functions from phase 2 have also been implemented. The student accesses these by
clicking on the link to the booking page:

Figure 50 – the booking screen

Colour coding aside, this is almost identical to the screen mockup presented in Figure 35.
Bookings are made immediately upon clicking an hour slot on the calendar; AJAX is used to
avoid the need for intrusive screen refreshes.

A student can move between weeks using the Next and Previous links, and they can also
navigate to a specific date by clicking on the field next to the Go to date text:

Figure 51 – navigating directly to a date

The introduction of the booking system mandated a number of small changes; system capacity
at a given moment is now measured not only by how many VMs are running, but also by how
many bookings there are. Additionally, one consideration that had not been anticipated but that
emerged during development (and has been catered for) is that of “weighting”. A booking made
by student who has the ability to run 5 concurrent VMs has the potential to take up more
resources than that made by a student who can only run 1. Thus system capacity measurements
now additionally take this factor into account.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 89	 September	 2010	

Sprint	 2	

The development continued to make good progress. Sprint 2 successfully extended the previous
work to incorporate the features outlined for phase 3 and maintain the project at a week ahead
of schedule.

Upon logging into the system, the student sees a screen like Figure 52. This is similar to the
previous iteration, but there are some important differences:

Figure 52 – post-login screen (phase 3)

All references to “virtual machines” have been removed, replaced with the term “lab”. These labs
still consist of a single virtual machine, but in contrast to the previous iteration where VMs had
to be set up in advance for each student, here the VMs are created on demand.

The screenshot in Figure 52 shows a student who has already used one lab, the Moving On lab.
However, the Getting Started lab shows a status of “not created yet”. Clicking the Create Lab
button will result in Figure 53:

Figure 53 – system provisioning a lab for a student

Once the lab has been created, it is automatically started, and the student is presented with the
usual options to connect to it, or suspend it. All other functions, such as the console screen
where the student interacts with a virtual machine, booking functions and connection
management and timeouts, are as before.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 90	 September	 2010	

The need to make Windows VMs unique before they can be cloned has been discussed
previously, and to facilitate the use of tools like wsname a tutor VM has a configuration setting,
rebootAfterCloning. Because a change to a Windows computer name requires a reboot, if one
sets the computer name of a freshly created clone to a unique value on first boot, it will require a
reboot to take effect – meaning the “first boot” is actually two boot cycles. The
rebootAfterCloning value allows the VM author to specify how many boot cycles to expect after
cloning before the clone is available for the student. In most cases, assuming that the new VM
contains a Windows OS and requires Windows network functionality, this value would be set to
2. In this scenario, the system will boot the clone and then wait for it to shut down to a fully
powered off state. It will then start the clone a second time and only then, once this second boot
has finished, allow student connections. If an alternative method other than wsname is being
used that requires more than two boot cycles, you would increase this value as appropriate. A
value of 1 here would make the new cloned VM immediately available to the student, with no
additional shut down and boot cycles. This might be an appropriate setting for non-Windows
OSes, or for environments where students’ lab exercises required no network functionality and
the VMs could be isolated from each other.

In any case, the assumption by the system is that any tutor VM that is cloned by the system and
allocated to a student for use was left in a state whereby, on next reboot, it will either run a
script to make itself unique, or it does not require such considerations in the first place.

Sprint	 3	

Development continued at the same pace maintaining the week ahead of schedule. During
sprint 3, the feature set proposed for phase 4 was delivered. In the previous sprint, a “lab” was
defined as a dynamically created virtual machine that is built per-student on demand at the
point of their first request for it. This was now extended as per the phase 4 metaphor, and the
complete lab / lab stage / VM and resource(s) composite learning object was implemented for
the first time (see Error! Reference source not found.).

The login and lab listing screens are unchanged from previous sprints. However, when
connecting to a lab, the student now sees Figure 54:

Figure 54 – the “in-lab” console

This is analogous to Figure 36. The VM console of the current lab stage is displayed on the left,
and the resources for the lab stage on the right hand side of the screen. If the lab stage has no
resources, the right hand pane is suppressed to give more screen space to the VM console. The

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 91	 September	 2010	

student can also click the button between the two panes to collapse the resource pane, and then
again to make it reappear.

Underneath the VM console screen, buttons that represent the individual stages of the lab
exercise are displayed. The student starts on lab stage 1. Clicking on one of the buttons will move
the student to that particular lab stage – this means:

• If the student has never visited that particular lab stage before, a new VM will be
dynamically created for them.

• The running VM for the currently running lab stage will be suspended.
• The VM for the destination lab stage will be started.
• The screen reloads, and the new lab stage VM console is displayed, along with its

resources (if any).

Similarly, the links at the bottom of the resource pane will move the student from resource to
resource, if there is more than one for this lab stage.

Sprint	 4	

Sprint 4 was primarily concerned with implementing the functionality earmarked for phase 5,
which consisted for the most part of the management interface for tutors to create labs, lab
stages etc.

Main	 tutor	 menu	

When a tutor logs in, they are confronted with a main menu. This is not directly analogous to
any particular screen mockup, as the initial presentation to tutor was not specified during the
Inception and Elaboration phases of the project.

Figure 55 – the main tutor menu

The main menu presents various areas that a tutor must traverse to create a lab in a logical
order if read from top to bottom. To set up a lab exercise, a tutor must create at least one tutor
VM, followed, by at least one lab stage (to which the VM will be attached), before creating the
lab itself and adding the lab stage(s) to it. The tutor might subsequently go back and add
additional VMs and stages, but the process of creating a lab will inevitably require the creation
of those objects in that order.

The Students and Tutors menu options are not directly implied by any use cases or screen
mockups, but one can anticipate that there is be a need to make changes to student
configuration settings (e.g. their maximum lab run time) without resorting to editing XML.
Similarly, adding new tutors to the system should also be XML-free. Given that development at
this point is approximately a week ahead of schedule, it is not unreasonable to add these menu
options with the intention of populating them with the appropriate functionality in the
remaining sprints.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 92	 September	 2010	

Virtual	 Machines	

Selecting the Virtual Machines link will display a screen similar to Figure 56:

Figure 56 – the tutor’s list of virtual machines

This screen is analogous to the mockup shown in Figure 41, but has been extended considerably.
While the list does come straight from the virtualisation backend, tutor VMs and distinguished
by a mortarboard icon and can be edited by their owning tutor or by a superuser. In contrast, a
backend VM may not be edited. The assumption is that the system administrator will create a
small number of backend VMs that will provide a foundation for tutors to use as a base their
labs around, and then add to in order to design their courses; it makes sense for such foundation
VMs to be constants and not easily editable at end user level.

Selecting Clone VM prompts the tutor for a name for the clone, creates it, and then connects
them to it. Similarly, Edit existing VM starts a VM and then connects the tutor to it. Either way,
the tutor will be presented with the VM console:

Figure 57 – the tutor VM authoring console

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 93	 September	 2010	

This screen is based on the screen mockup in and is a simple refactoring of the existing code
that delivers a VM to students from previous sprints.

One addition beyond the screen mockups is the Console and VM details tabs. The latter allows
the tutor to set a number of important configuration settings:

Figure 58 – editing tutor VM metadata

The importance of making new VMs unique has been discussed previously, along with the
potential for a newly created clone to require more than one boot cycle; the field here allows the
tutor to set an appropriate value to take this into account. The tutor can also specify the screen
resolution of the VM – this is important because it will tell view components how much screen
space to give the VNC applet within the student’s browser.

Lab	 Stages	

Selecting the Lab Stages function from the main menu yields Figure 59. (This screenshot shows
the system with only a single lab currently extant, but multiple labs would appear as one would
expect if present)

Figure 59 – choosing a lab stage to edit

There are options to filter the labs shown, so that on a “busy” system a tutor can more easily
disregard superfluous data.

Clicking on a lab results in Figure 60, which – some small cosmetic considerations aside – is
virtually identical to the design indicated by the mockup in Figure 44:

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 94	 September	 2010	

Figure 60 – editing a lab stage

Labs	

Selecting the Labs function from the main menu results in Figure 61, which is derived from the
mockup in Figure 38. Again, only a single item is shown, but on a fully-populated system
multiple items would appear as one would expect:

Figure 61 – selecting a lab to edit

Selecting a lab (or using the Create a new lab option) would result in Figure 62, which follows
Figure 39 extremely closely, and functions as per the accompanying discussion there:

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 95	 September	 2010	

Figure 62 – editing a lab

One aspect that was not anticipated in the screen mockups was the need to be able to re-order
lab stages, which is achieved by the up/down arrows next to a selected lab stage. The delete
buttons next to each selected lab stage are also superfluous – the << button already performs
this task.

Another conscious decision has been taken to remove the option to create a new lab stage from
the Edit Lab screen, to avoid inexperienced tutors forgetting which point of the authoring
process they are at. The intent is for the user documentation to drive them down the path
outlined previously, i.e. author VM ➔ lab stage ➔ lab. The feeling is that encouraging tutors to
dive out of that simple route might create risk potential confusion.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 96	 September	 2010	

Sprints	 5	 and	 6	

Coming to the end of the allocated development time period, the five phases anticipated have all
been delivered. Consequently, the remaining development time will seek to implement
functionality that was suggested once an attempt was made to use the system in an end-to-end
fashion8. Note that these functions have not been explicitly mandated by the various project
artefacts, so they do not correspond with (for example) screen mockups.

Student	 option	 in	 tutor’s	 management	 menu	

Clicking the Student menu now displays a screen similar to Figure 63. (As with certain other
screenshots, only one item is displayed, but multiple items would appear on a fully-populated
system.)

Figure 63 – selecting a student to edit

A tutor can filter out students who are not allocated to one of their courses, or display all
students. Clicking on a student results in a screen like Figure 64:

Figure 64 – editing a student

At the top of the screen, the configuration settings for the student are displayed, and can be
modified. Underneath, a list of labs that have been published to the student appears, along with
details of the progress that has been made by the student in each lab.

The Preview as… button allows the tutor to assume the identity of a student from the
perspective of the WLab system. The intended use for this function is for tutors to test their labs,
and ensure the student experience is as they’d expect.

8	 i.e.	 starting	 with	 a	 clean	 slate,	 logging	 in	 assuming	 the	 role	 of	 the	 initial	 tutor,	 attempting	 to	 author	 VMs,	 lab	
stages,	 labs,	 using	 the	 lab	 from	 the	 perspective	 of	 a	 “student”,	 then	 re-‐assuming	 the	 tutor	 role	 and	 attempting	
examine	 the	 student’s	 progress	

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 97	 September	 2010	

Tutor	 option	 in	 tutor’s	 management	 menu	

Clicking on the Tutors menu option will result in a screen like Figure 65:

Figure 65 – selecting a tutor to edit

A tutor’s details may be edited by clicking on the pencil icon, or a new tutor can be added with
Add a new tutor:

Figure 66 – editing a tutor

The login ID cannot be modified once a tutor has been entered, but the tutor name and their
superuser status is changeable.

Student	 progress	 details	 within	 lab	 screen	

When editing an exiting lab, two tabs have been added. Lab details will display the usual screen
where lab stages and the student list for the lab can be modified. However, Student Details will
show a screen akin to that shown in Figure 67:

Figure 67 – student progress details by lab

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 98	 September	 2010	

Here, you can find details of all the students’ progress on this particular lab. While this
particular lab has is only currently published to one student, this is a full list of students – a lab
that is published to 20 students would see all 20 displayed there.

Other	 work	 during	 these	 sprints	

An amount of “behind the scenes” work has taken place during the remaining sprints:

• Removal of all hard-coded user viewable strings in Java code and JSP pages

Up until this point, all string values that appear to the user (e.g. “Tutor name”, “Lab name”,
“WLab will create a new course if given a unique combination of course name and number”)
were either hard-coded within the controller classes, or inline on the JSP pages. Those
wishing to customise such values (for example, for translating the application into a
language other than English) would need to build a complete development environment,
make their changes, and rebuild the application – a non-trivial task. Consequently, all such
values have been moved into an easily editable XML file (conf/strings.xml) and Spring
dependency injection used to place these values into the appropriate places in Java and/or
JSP code.

• Modifications/enhancements to TightVNC client applet

A degree of inter-connectivity between the applet and the JSP-generated web page it is
embedded in has been implemented. When VNC fails to connect or its connection is
dropped, the applet resubmits the page. This is a cleaner approach than that used
previously, where the VNC applet itself attempted to re-establish the connection but the
page did not reload. It means that the appropriate Java controller code is re-run, which
means that functions such as IP address detection take place. In the event that the
connection failure was due to an environmental issue such as the VM’s IP address changing,
the student will simply see a page reload before their session resumes – as opposed to a
blank VNC applet attempting to connect to an IP address that is no longer valid.

• Distinguishing between “superuser” and normal-level tutors
Additional code was added to restrict normal-level tutors so that they can only modify their
own labs, lab stages and tutor VMs. They can still clone other tutor’s VMs, if they wish.
Superusers continue to be able to edit all objects regardless of owners.

• Refactoring of code and development environment to support Apache Maven

Maven is a software and dependency management tool that greatly simplifies the compile
and build process. As the intent is for the final application to be available under an open
source licence, it is important that potential developers who wish to make use of the
application can easily import it into their development environment. The use of Maven
allows such developers to quickly build the application with simple commands, without
having to manually acquire the various libraries (e.g. JiBX, JWBem, etc) on which the
application depends.

	

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 99	 September	 2010	

Appendix	 E	 –	 End-‐to-‐end	 functionality	 test	 suite	

The below details a series of tests, intended to confirm the functionality of the application from
both a tutor and student’s perspective. Further detail is given in section 4.4.1.

Test
Number

Details of activities Use cases/functions tested

1 Log into system as system administrator This tests:
• Sub-function #1
• Initial set up and automatic

creation of first tutor. This is
not specifically part of a use
case, but is part of the initial
“first run” set up – see
development log for sprint 4.

2 Create a new “superuser” tutor:
• Select Tutors from management menu
• Select Add a new tutor
• Enter tutor name and login ID9
• Click Save changes
• Edit the new tutor by clicking on the

“pencil” icon next to their name
• Enable the Superuser option
• Click Save changes
• Log out of the system (Return to main

menu, followed by Log out of WLab)

Intended to test the creation of
new tutors, and the ability to edit
existing tutors. These functions
were never directly enumerated by
the user community or
documented in use cases, but are
required system management
tools.

3 Configure new VMs based on the minimal XP
image:
• Log into the system as the tutor created

in test 1
• Select Virtual Machines
• Find the minimal XP image in the list of

VMs and select Clone VM. Name the
new VM “Test VM 1” and click OK.

• Once the VM console appears, configure
the VM as follows:

o Create a new text file on the
desktop called “stage 1”. Make
the VM safe for cloning (see
System Administrator and Tutor
documentation)

o Shut down the VM
• Repeat the process describe above to

create a second VM. This time, use the
VM created in the previous step as the
basis for your new one. Call it “Test VM
2” and the file on the desktop should be
called “stage 2”.

• Select Return to main menu.

This tests:
• Use case #7
• Sub-function #10
• Sub-function #11
• Sub-function #13
• Sub-function #18
• Sub-functions #19, #20 and

#21 (both backend VMs and
lab stage VMs are displayed,
and are filterable)

• Sub-function #14

4 Create a new lab stage:
• From the management menu (i.e. the

menu that appears when a tutor logs in),
select Lab Stages.

• Select Create a new lab stage.
• Give the new stage the name, Test Stage

1.
• Select the VM created in step 3. Click Set

next to the field Starting point VM for
this stage.

This tests:
• Use case #6
• Sub-function #22
• Sub-functions #24 and #25

9	 The	 login	 ID	 needs	 to	 be	 a	 valid	 login	 on	 the	 backend	 directory	 server.	

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 100	 September	 2010	

Test
Number

Details of activities Use cases/functions tested

• Enter http://www.google.com into
the resources field.

• Click Save changes.
5 Create a new lab for the Paintbrush example

exercise:
• From the management menu, select

Labs.
• Select Create a new lab.
• Give the lab the name Test Lab, a course

name Test Course, and a course number
TEST1.

• Select the lab stage created in step 4, and
use the >> button to add it to the lab.

• Add a student ID in the students field.
• Click Save changes.

This tests:
• Dynamic creation of course

objects where appropriate (see
development log for sprint 4)

• Dynamic creation of student
objects

• Use case #8 v2
• Sub-function #17
• Sub-function #26
• Sub-function #30
• Sub-function #31

6 Examine initial details of student and their
progress in the lab:
• From the management menu, select

Students.
• Select the student created in stage 5 (i.e.

the one added to the lab). Check the lab is
shown, with a single lab stage, and shows
“Not started yet”.

• Select Cancel to return to the previous
screen, and Return to main menu.

• Select Labs.
• Select the new lab created in stage 5.
• Click the Student Details tab.
• Similarly, check the single student is

displayed, with the single lab stage
shown as “Not started yet”.

• Log out of WLab.

This tests:
• Dynamic creation of student

objects when student ID is
specified on a lab.

• Initial population of lab
stage/student progress
records.

• Sub-function #27.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 101	 September	 2010	

Test
Number

Details of activities Use cases/functions tested

7 Test student functionality:
• Log in as the student who was previously

added to the lab created in previous
stages.

• There should be a single lab listed – i.e.
the one created previously. Its status
should show Not created yet. Click
Create Lab.

• After a few minutes – during which you
should see the message Creating a new
lab – you should see the options change
to Suspend lab and Connect to lab.
Click the latter. You should see the lab
console displayed alongside the Google
website (the “resource”).

• Make a change in the console (for
example, move a desktop icon). Then
select Take snapshot.

• Click Revert to stage start and reply
OK to the warning that will appear. This
should undo all your changes (so the icon
should move back to where it started).

• Click Revert to snapshot and reply OK
to the warning that will appear. This
should restore your changes.

• At the top of the screen, click the
appropriate link to mark the stage as
finished.

• Click Suspend lab.
• Log out of WLab.

This tests:
• Use case #1v2
• Use case #2
• Use case #5v3
• Sub-function #12
• Sub-functions #32 & #33
• Sub-function #29

8 Test automatic lab suspension facility:
• Log into WLab as the tutor created in

step 2.
• Select Students and click on the student

(there should still only be one).
• Set their max runtime to three minutes.
• Log out and re-login as the student.
• Click Start Lab. Once the lab has

started, you should see a countdown
from approximately three minutes above
the lab controls.

• Connect to lab. The same countdown
should be displayed above the VM
console.

• Wait until the countdown expires. You
should be returned to the initial main
menu. The lab controls will be
suppressed and a countdown will show
how long remains before the student can
re-start their labs.

This tests:
• Use case #3 v2

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 102	 September	 2010	

Test
Number

Details of activities Use cases/functions tested

9 Misc:
• Log in to WLab as the original system

administrator – NOT the tutor you
created in step 2.

• Select Students.
• Select Show only “my” students

(none should be displayed).
• Select Show all students.
• Click on the student used in step 7.
• Confirm that the single lab and single lab

stage shown as a progress of “Finished”.
• Click Cancel and Return to main

menu.

This tests:
• Tutor viewing of updaded

student progress records
• Sub-function #28

10 Test adding a new lab stage to an existing lab:
• From the management menu (i.e. the

menu that appears when a tutor logs in),
select Lab Stages.

• Select Create a new lab stage.
• Give the new stage the name, Test Stage

2.
• Select the second VM created in step 3.

Click Set next to the field Starting
point VM for this stage.

• Enter http://www.wikipedia.org into
the resources field.

• Click Save changes.
• Go back to the management menu and

select Labs.
• Choose Test Lab.
• Highlight Test Stage 2 and use the >>

button to add it to the lab.
• Select Save changes.
• Select Log out of WLab.

This tests:
• Sub-function #31

11 Test navigation between lab stages for
students:
• Log in as your student.
• Click Start Lab against your lab.
• Once it has started, Connect to lab.
• At the bottom of the lab console screen,

you should now see that there is a second
box marked Stage 2. Click it.

• After two minutes or so, you should be
connected to the second lab stage:

o You should have a desktop icon
marked “stage 2”

o The resource pane should be
showing Wikipedia.

• Suspend the lab.

This tests:
• Student navigation between

lab stages

12 Test student booking facilities:
• Click the link to the Booking Page.
• Click the Go to date field and select a

date from the date-picker.

This tests:
• Sub-functions #15 and #16.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 103	 September	 2010	

Appendix	 E	 –	 Poster	 presentation	 at	 ALT-‐C	 2010	

The following is a poster and accompanying two page handout which was presented at ALT-C
2010:

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 104	 September	 2010	

	

WLab: Virtual Machines as
Learning Objects for ICT
Teaching

Graham Alsop (g.alsop@kingston.ac.uk) Luke Hebbes (l.hebbes@kingston.ac.uk)
David Livingstone (d.livingstone@kingston.ac.uk) Paul Neve (paul@paulneve.com)

 1. The difficulties of delivering practical workshop
exercises in ICT teaching

ICT subjects present unique difficulties when
attempting to deliver practical workshops as part of
the learning experience. Institutional IT labs often
contain outdated equipment, pre-configured to a
“lowest common denominator” template, ill-suited to
the needs of ICT teaching. Many subjects within ICT
require administrative access to a server if the student
is to be able to practice the skills being taught. Finally,
distance-learning students present their own
problems, and are usually expected to acquire and/or
reconfigure home equipment for use during a course.

2. Introducing WLab

The WLab project addresses these issues by using
virtual machines to deliver a workshop environment to
the student which can be designed by the tutor to
specifically suit the needs of the course being taught.
At the heart of the system is an innovative composite
learnng object:

Figure 1 - WLab's composite learning object

Lab exercises are divided into stages, each of which
contains a distinct virtual machine. This virtual
machine contains all of the software and data required
for this stage of the lab. Alongside the virtual machine,
static learning materials are presented which describe
the activities and provide a learning context:

Figure 2 - A Java programming exercise

Lab
Lab Stage 1

Virtual
Machine

Resource
Resource
Resource

Lab Stage 2
VIrtual

Machine

Resource
Resource
Resource

Lab Stage 3
Virtual

Machine

Resource
Resource
Resource

WLab can be used during conventional, on-campus
workshop sessions to alleviate the issues presented
by limited equipment available in on-site IT labs. It can
also be used to deliver a consistent workshop
environment to distance learning students. However,
WLab not only resolves these infrastructural
difficulties, but also provides pedagogic benefits.

4. The authoring and delivery processes in a
nutshell

• The tutor designs a lab exercise by using an existing

virtual machine (supplied by a system administrator,
or a previous one created by them or another tutor)
as an initial template.

• The tutor modifies the virtual machine to provide an
environment for the 1st stage of the lab exercise.

• The tutor creates subsequent virtual machines for
the next stages, by cloning the previous and using
that as the base. This essentially means that the
tutor “works through” the activity of the lab as they
author it:

Figure 3 - Virtual machines within lab stages build

on previous stages

• The tutor creates lab stages, and assigns the virtual
machines to them.

• The tutor publishes the lab to students.

Figure 4 – Assembling the lab stages into a lab

• When a student runs the lab, on demand WLab will
create clones of the virtual machines within the lab
for the student’s exclusive use.

• Students are also provided with a booking system,
so that they can specify times that suit them for their
workshop activities.

WinXP
VM

Stage
#1

Stage
#2

Stage
#3clone ofclone ofclone of

Kingston University London
Faculty of Computing, Information Systems and Mathematics

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 105	 September	 2010	

 4. What IT people will need to know

WLab is a Java web application that requires Apache
Tomcat or similar servlet container. The virtualisation
backend currently supported is Microsoft Hyper-V
(although the application is written so that developers
could easily write support for other products e.g.
VMWare). The application authenticates against an
LDAP server – currently Microsoft Active Directory is
tested and supported.

To provide access to virtual machine consoles, the
TightVNC Java Applet (1) is used; virtual machines
will thus require a VNC server to be installed within
them.

For access remotely (i.e. outside your institution) the
port forwarding application Jumpgate (2) is used to
forward traffic from a single external network
address/port to internally addressed virtual machines.

Figure 5 – The topology of a WLab installation

5. The pedagogic advantages of the WLab
approach

• A student can navigate between lab stages and

compare their current work with the exemplar
provided by subsequent or future stages. This quick
navigation provides worthwhile learning content that
has no obvious analogue in a conventional
workshop environment.

• Williams notes the importance of the context of
learning objects (3). In WLab, a practical activity is
put into context via its accompanying static
materials. These will always be delivered alongside
the practical aspect of the lab activity as a
composite, coherent learning object. In a
conventional approach, one might use printed
handouts as an analogue. However, consider the
scenario of a student who takes such a printed

Web browser

Firewall

Jumpgate

web server
(Tomcat)

HTMLextended VNC
protocol

Virtualisation Layer

VM VM VM VM VM VM VM VM VM

Internal Network

External
Network

VNC protocol

HTML page

WLab web
application

Modified
VNC client

Java applet)

Lab stage
resources

(displayed in
an IFrame)

the
Internet

handout away from a workshop for home study.
Without having the equipment and software
environment discussed in the handout available to
refer to, the handout may be of limited or even no
value to the student in isolation.

• An entire lab exercise is represented as computer
files. Tutors can share their ICT labs as fully self
contained, ready to run learning objects, which can
then be deployed with little or no changes on any
WLab installation. This opens up the possibility of an
inter-institutional repository of such labs as open
educational resources.

5. Future work

WLab represents an iteration of KU’s work to create
learning objects that describe a complete ICT
workshop exercise, and the tools required to deliver
them to students:

The WLab application has recently reached the end of
its first development phase and is considered to be in
a usable state for an initial rollout. Work in the short
term will therefore concentrate on its roll out to
students and tutors within Kingston University, and the
subsequent analysis of the application’s effectiveness
within a real-world teaching environment. The authors
would be extremely interested in collaborating with
other institutions and/or individuals who can see a role
for WLab in their own activities, and who wish to
experiment with the application in their own
environment.

Future work will seek to integrate WLab with other e-
learning research occurring at KU. Work on electronic
assessment and integration with VLEs, including KU’s
home-grown KUOLE is also seen as key.

6. For more information

The WLab web site contains comprehensive
documentation, with sections targeted at tutors, IT
support staff, developers and students. There is also a
community forum for discussion and collaboration. It
can be found at http://www.paulneve.com/wlab.

7. References
1. TightVNC website [online]. Available from

http://www.tightvnc.com. (Accessed 17th August 2010).
2. Jumpgate website [online]. Available from

http://sourceforge.jumpgate.net. (Accessed 17th August
2010).

3. Williams DD. Evaluation of learning objects and
instruction using learning objects. In: Wiley DA (ed.)
The Instructional Use of Learning Objects [online].
Association for Instructional Technology; 2001.
Available from
http://www.reusability.org/read/chapters/williams.doc.

User
feedback

On-site lab
facilities/
students'

own
equipment

Virtual
machine
images
run via
Virtual

PC

VLab WLab ?
Electronic assessment

KUOLE virtual learning environment

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 106	 September	 2010	

Appendix	 F	 –	 Licencing	

The author’s intention was always to make WLab an open source project, as it was felt that this
would increase the likelihood of subsequent community involvement. However, the use of code
fragments from the JASMINe project potentially limits the licence used for WLab to the LGPL.

There is an argument that the amount of code used is so small, representing the tiniest fraction
of both WLab and JASMINEe, that the LGPL does not apply, particularly as the activities
involved deal with common tasks e.g. “start virtual machine”, “suspend virtual machine” that
realistically can only be achieved in one way in code, given WLab’s use of the same Java libraries
in order to access a Hyper-V virtualisation layer.

However, an expert opinion was sought from OSS Watch (www.oss-watch.ac.uk). Their
response was as follows:

Thanks for your question, I'm afraid we are not able to give as clear an answer as you would
perhaps like. In the strictest interpretation of the licence any reuse invoks the LGPL licence.

Arguing that the use of "String" would invoke the licence is not appropriate as "String" itself
does not contain any IP in isolation, nor is it possible to say that it was copied from a specific
source since it is a standard language construct. However use of "String" in a given context may
indicate the primary source e.g.

public String aReallyUnusualName = "fooBar";

However, it can be argued there is no IP in the above, but if we then also copy another line we
may be starting to bring IP into the equation, e.g.

encode(aReallyUnusualName);

If we now copy the "encode" method, which uses a complex mathematical operation on the
string it starts to become clear that IP has been copied.

The issue is not so much "how much" code, but rather the IP embodied in the copied code and
the risk that the owner of that IP might seek to enforce the applied licence.

You need to perform a risk evaluation with respect to the IP embodied in the code you have
adapted. The zero risk approach would be to reuse none of the open source code, even to the
extent of avoiding reading other peoples code (too late now).

Once you have completed this risk assessment you may decide that there is no IP embodied in
the code and that there is little or no risk of a legal case being brought against you. In which
case you may choose to proceed without applying the LGPL (NOTE: for your own protection you
should consult a lawyer before adopting this approach).

An alternative approach would be to approach the copyright holders of the original code and
ask for permission to use your modified code without invoking the LGPL.

Consequently, the simplest approach appears to be to use the LGPL for WLab’s own
distribution.

The other components used in WLab are distributed under the following licences:

Software Name and URL Usage Licence
Binny V Abraham’s calendar Javascript
http://www.openjs.com/scripts/ui/calendar/

In entirety, with
minor changes

New BSD

Carpe Slider Javascript
http://carpe.ambiprospect.com/slider/archive/v1.3/

In entirety See below

Jumpgate
http://jumpgate.sourceforge.net/

In entirety, with
modifications

Simplified
BSD

TightVNC Java applet client
http://www.tightvnc.com

In entirety, with
modifications

LGPL

Robert Hashemian’s Javascript countdown script
http://www.hashemian.com

In enterety, with
modifications

See below

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 107	 September	 2010	

In contrast to the LGPL, the BSD licence used in Jumpgate is very liberal and simply requires
you to acknowledge the copyright and disclaimers in the licence, but otherwise there are few
restrictions on use of the software, and there is no obligation to make any modified source
available if you distribute the binaries of your modifications. However, in the interests of
promoting community development our modifications are available with the rest of the source
code in the WLab SVN repository.

The Carpe slider is “linkware for non-commercial use in normal web pages (forms). Put a small
link near the slider or at the bottom of your page or with your other copyright info” (our
emphasis). An appropriate link has therefore been placed on the WLab website in the
appropriate place. This fulfils the terms of the licence.

Finally, Robert Hashemian’s countdown script specifies in the script source, “You may use this
code in any manner so long as the author’s name, Web address and this disclaimer is kept
intact”.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 108	 September	 2010	

Appendix	 G	 –	 XML	 Schema	

The initial versions of this schema were created using the first cut data model in Figure 20 as a
basis. The schema evolved further during the development process. The final version below was
created using a combination of the code-to-XML features of JiBX, combined with hand-tailoring
in order to fully describe the final data model as per Error! Reference source not found..

Certain elements of the schema used in the KUOLE VLE are incorporated here, so as to simplify
future integration.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://paulneve.org/wlab/datamodel" elementFormDefault="qualified"
targetNamespace="http://paulneve.org/wlab/datamodel">

 <!-- XML schema for WLab data model. -->

 <!-- all WLab objects extend WLabObject -->
 <xs:element type="tns:WLabObject" name="WLabObject"/>
 <xs:complexType name="WLabObject">
 <xs:sequence>
 <xs:element type="xs:string" name="id" minOccurs="1" maxOccurs="1"/>
 <xs:element type="xs:string" name="name" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>

 <!-- Tutor - surprisingly, represents a tutor on the system.
 Set superUser to indicate that they are a superuser, and can thus view/edit ALL
 courses/labs etc, and can also create new tutors -->
 <xs:element type="tns:tutor" substitutionGroup="tns:WLabObject" name="tutor"/>
 <xs:complexType name="tutor">
 <xs:complexContent>
 <xs:extension base="tns:WLabObject">
 <xs:attribute type="xs:boolean" use="required" name="superUser"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- Student - again, surprisingly, represents a student on the system -->
 <xs:element type="tns:student" substitutionGroup="tns:WLabObject" name="student"/>
 <xs:complexType name="student">
 <xs:complexContent>
 <xs:extension base="tns:WLabObject">
 <xs:sequence>
 <!-- student may have 0..* of these -->
 <xs:element type="xs:string" name="labProgressId" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element type="xs:string" name="bookingId" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element type="xs:string" name="vmId" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute type="xs:int" use="required" name="maxRuntime"/>
 <xs:attribute type="xs:int" use="required" name="maxBookings"/>
 <xs:attribute type="xs:int" use="required" name="maxConcurrentVMs"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- Lab object. Represents a lab exercise. -->
 <xs:element type="tns:lab" substitutionGroup="tns:WLabObject" name="lab"/>
 <xs:complexType name="lab">
 <xs:complexContent>
 <xs:extension base="tns:WLabObject">
 <xs:sequence>
 <!-- strictly speaking there will always be an owningTutor and

for labs created in the UI, but it's not compulsory, so minOccurs
 = 0 to assist those creating XML by hand -->
 <xs:element type="xs:string" name="owningTutorId"
minOccurs="0" maxOccurs="1"/>
 <xs:element type="xs:string" name="courseId" minOccurs="0"
maxOccurs="1"/>
 <xs:element type="xs:string" name="labStageId" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element type="xs:string" name="labProgressId"
minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 109	 September	 2010	

 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- LabStage. represents a single point of a lab exercises. -->
 <xs:element type="tns:labStage" substitutionGroup="tns:WLabObject"
name="labStage"/>
 <xs:complexType name="labStage">
 <xs:complexContent>
 <xs:extension base="tns:WLabObject">
 <xs:sequence>
 <xs:element type="xs:string" name="owningLabId" minOccurs="0"
maxOccurs="1"/>
 <!-- a labStage created by hand might not need an owning

 tutor -->
 <xs:element type="xs:string" name="owningTutorId"
minOccurs="0" maxOccurs="1"/>
 <!-- must have a VM, not much of a stage without one -->
 <xs:element type="xs:string" name="vmId" minOccurs="1"
maxOccurs="1"/>
 <!-- can only be max one endPointVm, but not compulsory -->
 <xs:element type="xs:string" name="endPointVmId"
minOccurs="0" maxOccurs="1"/>
 <!-- 0..* resources -->
 <xs:element type="xs:string" name="resourceId" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- A labProgress represents a link between the student, a lab and the
 stageProgresses (and thus the stages of the lab). Many (or no)
 stageProgresses may exist here (but only one lab and student) -->
 <xs:element type="tns:labProgress" substitutionGroup="tns:WLabObject"
name="labProgress"/>
 <xs:complexType name="labProgress">
 <xs:complexContent>
 <xs:extension base="tns:WLabObject">
 <xs:sequence>
 <xs:element type="xs:string" name="stageProgressId"
minOccurs="0" maxOccurs="unbounded"/>
 <!-- must have a lab and student - meaningless without -->
 <xs:element type="xs:string" name="labId" minOccurs="1"
maxOccurs="1"/>
 <xs:element type="xs:string" name="studentId" minOccurs="1"
maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- A stageProgress represents a link between a labProgress and a stage. See
 above. It also contains details of the progress made by the student in
 this stage. -->
 <xs:element type="tns:stageProgress" substitutionGroup="tns:WLabObject"
name="stageProgress"/>
 <xs:complexType name="stageProgress">
 <xs:complexContent>
 <xs:extension base="tns:WLabObject">
 <xs:sequence>
 <xs:element name="progress" minOccurs="1" maxOccurs="1"
type="tns:itemProgress"/>
 <xs:element type="xs:string" name="labProgressId"
minOccurs="1" maxOccurs="1"/>
 <xs:element type="xs:string" name="labStageId" minOccurs="1"
maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- ItemProgress is a simple enum type indicating progress stages. This is
 taken straight from KUOLE's Progress.xsd/NodeStatus. At the moment this
 is only used in stageProgress and also only the NotStarted, InProgress
 and Finished states are used. The complete set of values is here to
 assist future integration efforts -->
 <xs:simpleType name="itemProgress">
 <xs:restriction base="xs:string">

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 110	 September	 2010	

 <xs:enumeration value="NotStarted"/>
 <xs:enumeration value="InProgress"/>
 <xs:enumeration value="Finished"/>
 <xs:enumeration value="Reviewing"/>
 <xs:enumeration value="MarkedFinish"/>
 <xs:enumeration value="Frozen"/>
 </xs:restriction>
 </xs:simpleType>

 <!-- Course -->
 <xs:element type="tns:course" substitutionGroup="tns:WLabObject"
name="course"/>
 <xs:complexType name="course">
 <xs:complexContent>
 <xs:extension base="tns:WLabObject">
 <xs:sequence>
 <xs:element type="xs:string" name="owningTutorId"
minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- resource -->
 <xs:element type="tns:resource" substitutionGroup="tns:WLabObject"
name="resource"/>
 <xs:complexType name="resource">
 <xs:complexContent>
 <xs:extension base="tns:WLabObject">
 <xs:sequence>
 <!-- one resource, one URL. -->
 <xs:element type="xs:string" name="url" minOccurs="1"
maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- Booking represents a student booking. The booking runs for an hour after
 dateTime. -->
 <xs:element type="tns:booking" substitutionGroup="tns:WLabObject"
name="booking"/>
 <xs:complexType name="booking">
 <xs:complexContent>
 <xs:extension base="tns:WLabObject">
 <xs:sequence>
 <xs:element type="xs:string" name="studentId" minOccurs="1"
maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute type="xs:dateTime" name="date"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- There are several different types of VM in WLab. All extend this generic
 VM object. -->
 <xs:element type="tns:VM" substitutionGroup="tns:WLabObject" name="VM"/>
 <xs:complexType name="VM">
 <xs:complexContent>
 <xs:extension base="tns:WLabObject">
 <xs:sequence>
 <!-- must have a corresponding backend VM name set so that
 the virtualisation layer knows what VM to start/stop
 etc -->
 <xs:element type="xs:string" name="backendName" minOccurs="1"
maxOccurs="1"/>
 <xs:element type="xs:string" name="labStageId" minOccurs="0"
maxOccurs="1"/>
 </xs:sequence>
 <!-- must have the X-Y size of the VM desktop set, otherwise
 client side won't know how big to make the applet -->
 <xs:attribute type="xs:int" use="required" name="screenSizeX"/>
 <xs:attribute type="xs:int" use="required" name="screenSizeY"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- A TutorVM is a VM created by a tutor based on an existing backend VM -->
 <xs:element type="tns:tutorVM" substitutionGroup="tns:VM" name="tutorVM"/>
 <xs:complexType name="tutorVM">

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 111	 September	 2010	

 <xs:complexContent>
 <xs:extension base="tns:VM">
 <xs:sequence>
 <xs:element type="xs:string" name="owningTutorId"
minOccurs="0" maxOccurs="1"/>
 <xs:element type="xs:string" name="rebootAfterCloning"
minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- A StudentAllocatedVM is cloned from a TutorVM, on demand, the first time
 a student accesses a lab stage. -->
 <xs:element type="tns:studentAllocatedVM" substitutionGroup="tns:VM"
name="studentAllocatedVM"/>
 <xs:complexType name="studentAllocatedVM">
 <xs:complexContent>
 <xs:extension base="tns:VM">
 <xs:sequence>
 <!-- VMs created by hand might not have an original VM id,
 hence minOccurs = 0 -->
 <xs:element type="xs:string" name="originalVmId"
minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

</xs:schema>

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 112	 September	 2010	

Appendix	 H	 –	 Resources	 from	 the	 “beginning	 programming	 in	
Java”	 example	 lab	

The following is a textual representation of the HTML files that are used as resources within the
“beginning programming in Java” example lab discussed in section 4.4.2, User testing / Sample
labs.

Stage	 1	

Beginning Java - part 1

The purpose of this exercise is to allow you to gently dip you toe into the
waters of Java programming. We will use the NetBeans integrated
development environment to write a program that simply outputs "Hello,
world!"

Opposite, you should see a window with NetBeans and some program code
already loaded. The program doesn't actually do anything yet. You are
going to add a line of code so that it does.

You should be able to see a line of text in grey that says TODO: Make the
application say "Hello, world!". You'll need to add your new code here.
Place the cursor just after this line, and press RETURN to add a new line.

Tip: If the edge of the screen is hidden off of the side of the browser
window, click the bar between the NetBeans window and this instruction
pane to give yourself some more space. Click it again to bring the
instruction pane back.

Now, add the following line of code:

System.out.println("Hello, world!");

NetBeans will offer helpful suggestions as to what command you may be
trying to enter. At the moment, you won't understand any of these - don't
worry too much about them (but when you get proficient, you'll appreciate
them enormously!)

As you type, you will also see that NetBeans underlines your input with a
red squiggly line, similar to that seen in Word when a word is spelled
wrong. Its meaning isn't too different here - it means that what you're
typing isn't a valid piece of Java code. Once you finish entering the line -
make sure you get the semi-colon on the end! - you should find the line
disappears. This means that the code is valid.

When you have entered the line of code correctly, you should be able to run
the program. Click the green "play" icon. You should find it in the row of
icons towards the top of the NetBeans window.

If everything is right, you should see the output Hello, world! appear in
the bottom pane of NetBeans (labelled "Output"). Congratulations! You
have just written your first Java program!

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 113	 September	 2010	

Having problems?

• Make sure that none of your code is underlined with red squiggles.
This will give you a clue as to where the error might be.

• If you've really messed it up, and want to go back to the beginning,
click the button Revert to stage start.

Stage	 2	

Beginning Java – part 2

The purpose of this exercise is now to introduce variables now that you've
had some experience of using the lab environment and NetBeans.

One way to think of variables is as a box for "stuff". In this context, "stuff"
can be a number, some text (referred to as a string), or an object (more
about those later!).

We've added the following code to your program, after your Hello, World!
line of code:

int mynumber = 7; System.out.println("My number is "+mynumber);

Run the program (the green play icon, remember?) and you'll see

Hello, world! My number is 7.

So, what is happening here? Firstly, there is a variable called mynumber.
Before variables can be used in Java, they must be declared. To declare a
variable, you simply specify its type followed by its name. In this case,
we've declared a variable of type int. This is short for integer, meaning a
whole (i.e. without any fractional part) number. You can also set an initial
value when you declare a variable. In our case, we use this to set the initial
value to 7.

Variables can be modified simply by assigning a new value, e.g.

mynumber = 12;

Try adding this line before the line where the value is printed, and run the
program to see the effect. You should see that the second number
assigned, i.e. 12, overwrites the first. If you go back to the "box" metaphor,
what we've done is to take the first lot of stuff out of the box (i.e. the 7)
and put new stuff into the box (i.e. 12).

Now move on to stage 3 of the exercise.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 114	 September	 2010	

Stage	 3	

Beginning Java – part 3

The purpose of this exercise is now to introduce you to conditional
processing, meaning the ability to make your program's behaviour different
depending on certain conditions, such as the value of a variable.

Examine the code in NetBeans opposite. The variable declaration and
the System.out.println command should be familiar to you now, but note
the new command, if.

if works exactly as you'd expect, and is basically a case of you as the
programmer telling the computer, "if ABC is the case, do XYZ". In Java, you
specify the condition to be met between brackets, and the code that occurs
if the condition is true between curly brackets (i.e. { and })

• Run the program. What is the result? Is it what you expected?
• Change the value assigned to mynumber to 15. Now run the

program. Does that do what you expected?
• What do you think will happen if you change it to 10? Try it. Why do

you get that result?
•

Now fix the program so that the response 10 is my favourite number is
displayed if mynumber is 10.

Tip: The way to compare values is using a double equals sign, i.e. ==

	
	
	

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 115	 September	 2010	

Appendix	 I	 –	 User	 documentation	

The following is intended to provide a comprehensive suite of documentation for individuals
wishing to make use of the WLab system. Our assertion is that this is a key deliverable if WLab
is to acquire a user base beyond those who have been directly involved in its development thus
far. This documentation is also available in wiki form, at http://www.paulneve.com/wlab.

There are four sections:

Documentation for Tutors
Intended for tutors, and others who will be using the tutor management functions to author
labs. This takes the reader through the process of creating tutor VMs, placing them into lab
stages and creating a lab by way of an example.

Documentation for System Administrators
Intended for those who will be providing technical support to tutors and students, and who will
have overall responsibility for the installation and maintenance of the WLab system. Provides
details of how to configure and set up a binary distribution of WLab.

Documentation for Developers
Intended for those who wish to modify the WLab source code for their own purposes. Provides
information of how to acquire the source code, how to build an appropriate development
environment, and detailed information about the structure of the application, relationships
between Java classes and JSP pages, etc.

Documentation for Students
Intended for students and others who will be accessing the labs published by tutors. Takes the
user through logging into the system, connecting to a lab, and using the booking system.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 116	 September	 2010	

Documentation	 for	 Tutors	
	
Introduction	

WLab is a web application that provides a virtual lab environment for any workshop activity that
requires the use of a computer. WLab makes use of virtual machines to deliver an IT
environment in which a student can perform the tasks involved in the lab exercise, regardless of
the local computer they are using.

For those unfamiliar with virtual machines, a virtual machine or VM is a complete simulation of
an entire computer system – hardware, software and any accompanying user data. This means
that the simulated computer can include everything the student needs to perform the tasks
required of them in the lab exercise. Consequently, the student does not need any specific
software or configuration parameters on their local PC.

WLab allows tutors to design and publish lab exercises that are divided into stages; each stage
contains a complete virtual machine, along with – if required –appropriate static learning
material that complements the activities of the lab. Students access these labs through any
standard web browser.

Assumptions	

WLab is primarily intended for use in teaching ICT-related subjects. As such, the assumption is
that tutors are computer literate and are able to follow IT concepts and terminology at the level
required to teach ICT. While WLab does provides a friendly user interface for tutors to create
their labe, and attempts to hide the cumbersome technical details such as editing XML files
and/or configuring individual VMs for each student, you will need to understand the underlying
realities of what the application is actually doing behind the scenes.

As a yardstick, if you do not understand the instruction

Save the file to the root of the C:\ drive as stickguy.bmp.

then WLab is probably not for you - or, at the very least, you will need to co-opt some additional
help in order to be able to use it!

It is also assumed that your System Administrator has already installed WLab in your
environment, and made the appropriate preparations outlined in the Documentation for System
Administrator. In particular, you should have been supplied with the URL of WLab at your
institution, and you should also have been given details of how your System Administrator
would like you to make your VMs safe for use in lab stages. If either of these assumptions are
not the case, you should NOT proceed, and should consult your System Administrator for
advice.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 117	 September	 2010	

WLab	 elements	 and	 terminology	

The following terms are used throughout this documentation, and within the WLab application
itself:

Lab
A workshop-style practical exercise that a student performs with a computer intended to achieve
a learning objective.

Lab stage
Each lab may be subdivided into intermediate "goals" that occur throughout the activities. These
are referred to *lab stages* and a WLab lab object can contain as many or as few as you like. The
end point of a given lab stage is usually considered the correct "answer" for that part of the lab
exercise. Usually, subsequent stages will start from the end point of the previous, or at the very
least build on the activities of the previous stage.

Virtual machine (VM)
A virtual machine that includes the required software and data, and starts up at a point
appropriate for a lab stage. There are two types of VMs in WLab, a backend VM and a tutor VM
– the difference will be explained later. A lab stage always contains a tutor VM.

Resource
A static document in the form of a URL, intended to provide complementary learning content to
inform, instruct and assist the student with the activities of a given lab stage. A lab stage can
contain multiple resources; equally, it may not contain any resources at all.

The diagram below shows how these concepts are layered to form a coherent learning object:

Figure 68

The lab stages, when taken in order, ultimately describe the path that the student would take
from start to finish while completing the target activity of the lab:

Figure 69

As previously noted, in most cases the end state of a given stage represents the starting point of
the next stage.

Lab
Lab Stage 1

Virtual Machine

Resource

Resource

Resource

Lab Stage 2

Virtual Machine

Resource

Resource

Resource

Lab Stage 3

Virtual Machine

Resource

Resource

Resource

Lab
Start

Stage
#1

Stage
#2

Stage
#3

Lab
End

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 118	 September	 2010	

Planning	 a	 Lab	

Before attempting to build a lab in the WLab application itself, you should devote some time to
planning. You will probably have a broad outline in your mind already if you are considering
using WLab and are reading this documentation, but before jumping in consider the following
points:

• What is the purpose of the lab exercise?

You should think about what you want to actually achieve with the exercise. What are you
trying to impart to your students? Do you intend the lab to be a stand-alone teaching device,
with no reference to other modes of teaching? Or, is the lab simply a means for the student
to practice techniques and skills that have been communicated via a different method of
teaching (e.g. a lecture given previously)?

• What activities will the student undertake during the lab?
Having spent some time considering the lab’s purpose, you should now devote some time to
examining the actual activities the student will undertake during its execution. Put yourself
in a student’s place and make some bullet-points as to what you would actually be doing,
step by step.

• What intermediate milestones or goals are there during the lab?
Think about where there may be natural breaks, or specific goal points where the lab can be
broken up – these will define your lab stages. If you are struggling to break the lab down,
you might try to identify the points where new techniques and/or functions are being
introduced.

• What software/computer configuration is needed in order to do the lab? How

will this change with each subsequent lab stage?
Having put yourself in the place of a student undertaking the lab, consider what actual
programs you will be using if you were to go from start to finish. You should also think
about the data that will be needed within the programs at each lab stage.

• Will there be any accompanying static resources?
If your intention was to give the students paper handouts (or indeed, any piece of static
prose) containing the lab directions, you might consider breaking this material into small,
bite-sized chunks, re-authoring as HTML and publishing them on the web. They can then be
added as resources to the lab and will appear alongside the lab environment as the student
works.

Spend some time making some bullet-point type responses to the above. Then, it is
recommended that you sketch out the overall form of the lab using the diagram in Figure 68 as a
guideline. This does not have to be a work of art – the motivation here is to help you firm up
your thoughts about the lab, not produce something aesthetically pleasing!

Consider a very simple lab exercise – teaching students to draw in Microsoft Paintbrush. We
might address the questions raised above as follows:

• The purpose of the lab is to teach basic use of MS Paintbrush.
• The activity they will perform in the lab will be to draw a stick figure. As the exercise

progresses, they will incrementally add additional aspects to their drawing. Each new aspect
will introduce new functions of the Paintbrush program.

• The lab will be divided into three stages:
o Stage 1, the student will draw a basic stick figure
o Stage 2, the student will add a hat and face to the figure
o Stage 3, the student will add a “bunch of flowers” to their drawing

• The student will only need an environment with a version of MS Windows that includes
Paintbrush. A basic installation of Windows XP will be ample. Lab stages 2 and 3 will need
to include a pre-drawn version of the starting point for that stage.

• Each stage will have a single resource that gives an overview of the activities and objectives
of the stage.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 119	 September	 2010	

Ultimately, the student will be aiming for one of three “goal” pictures at the end of each of the
three stages:

Figure 70

Note how each new stage brings in a new function of Paintbrush. The first stage introduces
drawing by hand with the brush tool. The second stage introduces the fill tool, and the third
introduces both colour selection and the spray can (for the “heads” of the flowers). A well-
designed lab exercise will do the same, and through the activities of each subsequent stage
introduce new skills to the student.

If we were following the advice given previously, and sketching out a skeleton of our lab
structure, we might end up with something like the below:

Figure 71

The best way for you to become familiar with WLab and creating your own labs is to work
through an example – and given that we now have it all planned out, what better example than
this Paintbrush lab? With our planning documentation in hand and in mind, we are now ready
to log into WLab and start building this example lab.

It is highly recommended that you work through this entire example before trying
to create an original lab of your own. This example will take you through
everything you need to know to author WLab content. Once you have this
grounding, you should easily be able to apply the procedure to your own content.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 120	 September	 2010	

Building	 the	 lab	

Log into WLab by opening a web browser and going to the appropriate URL (your System
Administrator should have given you this). Login with your user name and password. You
should be presented with the following menu:

Figure 72

The menu options are ordered in a logical sequence, following the recommended order in which
a tutor should create the constituent parts of a lab:

Figure 73

We will start by creating the virtual machines required for the Paintbrush example lab.

Building	 the	 virtual	 machines	

IMPORTANT: Before attempting to create a virtual machine, you should make
sure you are familiar with the procedures required to make a VM safe for use in a
lab stage. Your System Administrator should have issued you with documentation
that explains how to do this in your environment. If you do not have this
documentation, or you do not fully understand it, you should NOT proceed.
Instead, consult your System Administrator for advice.

To create a virtual machine, click on Virtual Machines from the main menu. You will be
presented with something similar to the screen below (although you may have fewer or more
VMs listed)

Start Build
VMs

Build
Lab

Stages

Build
Lab End

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 121	 September	 2010	

Figure 74

At this point, it is important to distinguish between the two different types of virtual machines
available to you:

• A backend VM is set up by your system administrator, and can only be used as a
starting point for you to create a new virtual machine for your labs. You cannot create or
edit them yourself.

• A tutor VM is a VM that has been created by a tutor for direct use in WLab labs. These
VMs can be edited after their creation (although is it highly advised not to modify them
once they have been used in a lab and the students have started to use that lab). They
are denoted by the mortar board icon next to them.

Creating a VM requires you to choose an existing VM that will serve as a starting point. Your
system administrator should have set up some initial backend VMs that you can choose from.
You should liaise with them for further details, or if you need any additional VMs created. For
the example Paintbrush lab, you only need a VM with a basic installation of Windows XP.
Confirm with them which particular VM this is on your system, find it in the list, and click
Clone VM.

You will be prompted to give the new VM a name. This name needs to uniquely identify your
VM, and cannot subsequently be changed. Ideally, the name should allow you to determine the
lab and lab stage that the VM will be used in, so that when it appears in a list you can easily
determine its purpose.

The VM we are creating at this point will eventually be used in stage 1 of the Paintbrush example
lab. A name like Paintbrush Demo – VM for stage 1 would be appropriate. Once you have
supplied a name for the new VM, click OK.

It will take several minutes for the new VM to be created. During this time, you will see the
message Waiting for your session to come on line. Please wait. The page may refresh
itself several times during this period, and the Waiting for your session… message might,
towards the end of the process, disappear to be replaced by a smaller message that states
Connecting to… All of this is normal. After a few minutes, you should eventually be presented
with a screen that looks similar to the following:

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 122	 September	 2010	

Figure 75

On the left hand side of the screen you will see the VM console. If you are following our example,
this should be a simple Windows desktop. You can interact with the VM itself in much the same
way as you would any computer – clicking on the various icons and other elements of the
operating system will perform their usual tasks. On the right hand side of the screen there is an
instructions pane. This is intended to remind expert users of the steps required during VM
authoring.

If you want to see more of the VM console – it may be that one side of it is obscured as a result
of the browser window being too small – you can hide the instructions pane by clicking the
separator bar that appears between the two panes. You can also resize the VM console itself with
the slider control underneath, next to the text Resize console display. Move the slider to the
desired value, and click Scale. If, for example, you scale to 50%, this means that the VM console
will be displayed at half of its normal size – meaning there is room for twice as much of the
screen within the browser page. (Of course, the price you pay for this is a loss of detail).

If we go back and consider stage 1 of our example Paintbrush lab, we now need to configure the
VM so that when it starts up, a copy of Paintbrush appears with a blank canvas ready for
drawing in. For Windows XP, the simplest way to do this is to add a shortcut in Start / All
Programs / Startup to mspaint.exe. Navigate the Start Menu to the Startup folder, right-
click it, and select Open. In the window that appears, right-click again, select New / Shortcut
and then type mspaint.exe. Click Next, and then Finish. (If your System Administrator has
supplied you with a newer version of Windows such as Vista in the backend VM, you may need
to adapt these steps slightly.)

The VM is now ready to use in stage 1 of the Paintbrush exercise. If you were creating a VM to
use in a lab of your own, you might also need to install additional software, upload/create files
and/or data for the lab exercise, and so on. The objective during the VM configuration is to
prepare the VM so that it contains everything the student needs to perform the task required of
them during the lab, and that it boots up into a position where the student can immediately
continue this stage of the lab10.

10	 A	 handy	 checklist	 of	 common	 activities	 you	 may	 need	 to	 perform	 when	 configuring	 a	 VM	 can	 be	 found	 in	 the	
Tutors’	 Quick	 Reference	 section.	

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 123	 September	 2010	

Once the configuration of the VM is complete, IT IS ABSOLUTELY CRUCIAL that you
follow the instructions given to you by your System Administrator to make the VM
safe for use in a lab stage. If you do not follow these steps, students may not be
able to connect to your lab, and you may adversely affect other tutors/students’
labs. As stated previously, if you do not have these instructions and/or do not
understand them, you should not proceed and instead should consult your System
Administrator for advice.

Once you have made the VM safe for use in a lab stage, you should shut it down. Our example
uses a Windows-based VM, so you should simply use the usual Shut Down option in the Start
Menu (note shut down – NOT restart!). You will not get any visual indicator that the VM has
concluded its shut down – once you have issued and confirmed the shut down command, you
can click the Return to main menu option.

Your VM is now ready for use in a lab stage. However, what you should do now is create the VMs
for stages 2 and 3. A common shortcut is to use the VM from the previous stage when you come
to clone your new one, as illustrated below:

Figure 76

Because each subsequent VM is a clone of the previous, it includes all of the software,
configuration and file/data of the last. The configuration of the new VM essentially entails you
working through the same activities as the student would perform during that stage of the lab
exercise. The advantage of this is twofold:

• You only need to perform the initial, "main" configuration required for your lab (e.g.
software installation, uploading of data) once - i.e. when you create the first VM for the
lab exercise.

• Working through the same activities as the student will during the lab allows you to iron
out any bugs in the process as you work through creating the VMs. You might also want
to, concurrently, write any accompanying handouts or documentation that will
complement the lab exercise (which, later, can be turned into WLab resources).

So, to create the VMs for the Paintbrush demo lab stages 2 and 3 we will simply repeat the
previous steps, but instead of cloning the original Windows XP VM, we will clone the VM from
the previous stage. So, to create our VM for stage 2, find the VM for stage 1 that you just created
and click Clone VM.

Once the cloning process is complete, you should find that Paintbrush is already visible in your
VM console screen. Now draw the first stick figure (as per Figure 70). Save the stick figure to the
root of the C:\ drive as stickguy.bmp.

You now need to modify the shortcut in the Startup menu so that it not only starts Paintbrush,
but starts Paintbrush with the drawing loaded. Assuming you saved into the root of C:\ as
advised, change the shortcut so it reads mspaint.exe c:\stickguy.bmp.

NOTE THAT THE CHANGES YOU ARE MAKING HAVE BEEN MADE ON THE
FRESHLY MADE CLONE, AND NOT ON THE FIRST VM YOU CREATED. The VM for
stage 1 is not being altered.

That concludes the configuration for the VM for stage 2 of this lab. As before, follow the
procedure for making the VM safe, then shut the VM down. Select Return to main
menu.

Now, to create the VM for stage 3, we repeat the process, except this time we will clone the stage
2 VM just created. Make the appropriate changes to the stick guy and save the graphic back to
c:\stickguy.bmp. That’s all you need to do to configure stage 3 – all the other settings have

WinXP
VM

Stage
#1

Stage
#2

Stage
#3clone ofclone ofclone of

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 124	 September	 2010	

already occurred during your work on previous stages, and when you clone a previous VM to
serve as the basis of the next, you get all these settings included. As always, be sure to follow
the procedure for making the VM safe, then shut the VM down and Return to main
menu.

You should now have three VMs set up and ready to be used in your Paintbrush lab!

Building	 lab	 stages	

The next step in constructing the Paintbrush lab is to author its lab stages. Select Lab Stages
from the main tutor menu, and from the screen that appears, select Create a new lab stage.

Figure 77

First, given the new stage a name – as was the case previously, this should be descriptive enough
so that you can identify the lab stage when it appears among potentially many others like it in a
list.

Then, select the virtual machine you created for lab stage 1 (as you will naturally have given your
VMs a descriptive name, you should easily be able to determine which VM belongs to which
stage!). Click the correct VM in the table underneath the text Available Virtual Machines; it will
be highlighted in yellow. Then, click set next to the field Starting point VM for this stage to
allocate the VM to the stage.

The resources field expects you to enter web URLs; the web page that these URLs will be
displayed to the student when they undertake the lab in the same fashion as the instructions for
tutors were displayed when you were creating your VMs. Any such URL should include the
http:// or https:// aspect.

For example purposes, there are three internal resources within WLab that correspond to the
Paintbrush example stages; these are resource1example.htm, resource2example.htm and
resource3example.htm where the number corresponds to the stage. To use these internal
resources, simply enter them into the field as shown here, sans http://.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 125	 September	 2010	

When you have finished entering the details for stage 1 – the screen should look similar to that
in Figure 77 – click Save Changes.

If you are working through the Paintbrush example, repeat this process for the other two lab
stages.

Adding	 the	 components	 together	 in	 a	 lab	

Having created all the constituent components for our Paintbrush example lab, we can now
bring them together and create the lab itself. From the tutor’s main menu, select Labs, and
Create a new lab.

Figure 78

As always, give the lab a descriptive name.

You should now enter a course name and number. For the purposes of this example, you can use
the example data as per Figure 78. However, when creating your own labs in the future, you
should note the following:

• If you enter a combination of course name and number that does not match an existing
course on the system, a new course will be created.

• If you enter a course number, and it matches an existing course on the system, it will
automatically fill in the course name. So, when creating a new lab, if you want to add it
to an existing course it is probably best to leave the course name blank and just enter
the course number.

A green or red prompt text will appear underneath the course name advising whether or not a
new course is going to be created, so you can check that the behaviour is as you would wish.

Once you have populated the basic lab data, you should select the lab stages you want to include
in your lab. Use the << and >> buttons to move lab stages to and from the Selected Lab
Stages pane – these lab stages are the ones that will be used in the lab. They will be delivered to
the student in the order the appear in this pane – so if you want to change this order, use the up
and down arrows to move a particular lab stage.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 126	 September	 2010	

Finally, you need to populate the Students field. Here, you should enter the login IDs of the
students to whom this lab stage will be published, separated with commas.

When you have finished creating your lab, click Save changes. At this point, the lab is
immediately published to the students specified.

Congratulations! You have just authored your first lab in WLab!

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 127	 September	 2010	

Managing	 and	 examining	 student	 data	

A tutor can use WLab without ever performing any student administration. When you add a
student login name or ID to a lab, a student object is automatically created on the system and is
populated from your institutional directory the first time they log in. There is no direct need for
you to modify these student objects; however, you may wish to change certain settings on a per-
student basis. Additionally, you might wish to check a particular student’s progress. The
Students option on the tutor main menu provides this functionality.

Having selected a particular student, you will see the following screen:

Figure 79

The fields displayed are as follows:

Student Name The student’s name. If the student has yet to log in to WLab, this will be

blank. You can modify this name if you wish; such modifications will
apply solely to WLab.

ID The student’s login ID. This cannot be changed.

Max runtime This is a value, in minutes, that represents the maximum amount of
time the student can run their lab sessions for. If they reach this
maximum amount of time, all their sessions will be suspended. They
will not be allowed to resume lab sessions until an interregnum period
has elapsed – this is to ensure that students cannot “hog” the system.

Max advance
bookings

So that students have some control over when they can work, a booking
system is available to them. During a booking, they are allocated a
guaranteed slot in which they can work on their labs, and their max
runtime value will not apply for the duration of the booking. Each
booking lasts an hour. The value in this field specifies how many such
advance bookings the student may place.

Max concurrent
VMs

This value specifies how many virtual machines – essentially, how
many labs – a student can have running at the same time.

At the bottom of the screen, all labs that have been published to this student are displayed,
along with a colour-coded indicator that shows how far they have progressed in each lab.

Student progress data can also be found in the lab editing screen – if you edit an existing lab,
then select the Student Details tab, you will see progress indicators for all of the students to
whom that particular lab has been published.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 128	 September	 2010	

Managing	 Tutors	

If you are a superuser on the WLab system, you can also add new tutors to the system, or edit
exiting ones. Select the Tutors option from the main menu:

Figure 80

Clicking on the pencil icon, or selecting Add a new tutor will display a dialogue box like the
following:

Figure 81

If creating a new tutor, you will need to supply a login ID (this should be the username they use
to log into your institutional IT services - either they or your System Administrator should be
able to tell you what this is). Once the login ID has been entered and the tutor saved, it cannot
be susbequently modified, so be sure to enter it accurately.

The tutor's name can be anything you like and will apply to WLab only - it does not have to
exactly match the format of their name on any other system.

Finally, the Superuser checkbox indicates whether or not the tutor will have the ability to
create and edit tutors themselves. A superuser also has the ability to edit all labs and lab stages
on the system.

Click Save Changes when you have entered the tutor's details to your satisfaction.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 129	 September	 2010	

Tutors’	 Quick	 Reference	 Guide	

The following is intended to serve as a quick reference for tutors who are already
familiar with the WLab system, to quickly remind them of certain important
aspects of what has previously been covered. It is a “quick reference guide” not a
“quick start guide”! If you have not previously worked through the other material
in the tutors’ documentation, or otherwise are not familiar with the differences
between labs, lab stages, backend VMs and tutor VMs, please go back and work
through the previous material.

The	 structure	 of	 a	 WLab	 lab	

A lab is divided into lab stages, which in turn contain virtual machines and resources:

Use this diagram as a basis to plan your labs prior to sitting in from of the system itself.

Suggested	 component	 authoring	 order	

	 Suggested	 order	 of	 activities	 during	 VM	 authoring	

1. Make any configuration changes needed on the base operating system.
2. Install any additional software required for the lab activities.

• In most cases you will only need to do steps 1 & 2 once, for the first lab stage. If you
then make a point of using previous stage VMs as the basis for your subsequent
VMs, these subsequent VMs will already have the additional software installed.

3. Install any files, data or other non-software components required for the current lab
stage
• Depending on how big these are, it may be easier to simply author them from

scratch within the VM. Alternatively, you will need to upload them to somewhere
that is accessible from within the VM console (e.g. an FTP server, some webspace or
a network drive).

4. Configure the VM so that it automatically loads any required software/documents/etc
immediately after boot
• On a Windows VM, this will usually involve adding options to the Startup folder in

the Start Menu.
5. CRUCIAL: MAKE THE VM SAFE, FOLLOWING THE INSTRUCTIONS

GIVEN TO YOU BY YOUR SYSTEM ADMINISTRATOR! NEVER FORGET
THIS!

6. Shut down the VM using its console via the standard functions (e.g. on a Windows VM,
go to the Start menu and select Shut Down).

Lab
Lab Stage 1

Virtual Machine

Resource

Resource

Resource

Lab Stage 2

Virtual Machine

Resource

Resource

Resource

Lab Stage 3

Virtual Machine

Resource

Resource

Resource

Start Build
VMs

Build
Lab

Stages

Build
Lab End

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 130	 September	 2010	

Other	 tips	

• This guide has assumed that VMs that are being authored are explicitly intended to be used

in a lab stage. Nothing says this has to be the case. If you as a tutor will regularly use a
specific suite of software across many courses, it makes sense for you to prepare a
“foundation” VM that you will always use as your starting point.

Consider the example of a tutor who teaches several Java programming courses, e.g.
“Introduction to Java Programming”, “Web Development in Java”, “Desktop Application
Development in Java”. It would make sense for this tutor to take time right at the beginning
and author a VM that includes his preferred IDE, a known-good version of the JDK, any
common libraries he/she uses, etc. This foundation VM could then be cloned and used as
the basis of stage 1 for labs for three Java courses. Ongoing stages of the labs would clone
the previous stage’s VM as normal.

• When authoring VMs, the snapshot functions can be extremely useful. Clicking on Take
snapshot will copy the current state of the VM; revert to snapshot will drop any
changes made since the snapshot. Snapshotting regularly means if you make any mistakes
during VM configuration that are difficult to unravel, you can simply revert to a previously
known-good state.

• The documentation advises that one should create all the VMs, then all the lab stages, then
the lab itself. This is the process that was followed in the example lab. However, when it
comes to creating your own content it may not be practical to build the entire lab in a single
sitting. However, at the very least you should follow the process for the first lab stage – so
build the VM for lab stage 1, then build lab stage 1 itself and attach the VM, and then build
the lab and insert lab stage 1 into it. This one-stage lab can then be published to your
students, and you can subsequently go back and add additional VMs and lab stages as and
when you desire. The important thing is that you should create at least one VM, then at
least one lab stage before creating the lab.

• The prevailing assumption is that the completed state of (for example) stage 1 of a lab is
also the starting point of stage 2. This may not always be the case, and in such cases, there
is a field on the lab stage editing screen End point VM for this stage. This allows you to set
an additional VM against the stage to represent an exemplar “completed state”. This is
never seen by the student, but serves as a reference to you and other tutors as to the
“correct answer” for the lab stage. You may well choose to use this as the basis of your clone
when authoring the subsequent stage’s VM.

It is not mandatory, but good practice is always setting an end-point VM on the final stage
of a lab, as there is no subsequent stage start point to serve as the “answer” to the lab stage.

• If you want to preview a lab from the perspective of a student, there is an option when you
view/edit a student, Preview as… Selecting this option will essentially make you assume
the identity (in a WLab context!) of the student, which means you can view the lab exactly
as they would see it. In this mode, the student progress states are not set; however, any
other changes you make in lab stage VMs are permanent and will be seen by the student.
Before making any changes you should make a snapshot so that you can easily revert back
to the state you found the lab stage in.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 131	 September	 2010	

Documentation	 for	 System	 Administrators	
	
Introduction	

WLab is a web application that provides a virtual lab environment for any workshop activity that
requires the use of a computer. WLab makes use of virtual machines to deliver an IT
environment in which a student can perform the tasks involved in the lab exercise, regardless of
the local computer they are using.

WLab allows tutors to design and publish lab exercises that are divided into stages; each stage
contains a complete virtual machine, along with – if required –appropriate static learning
material that complements the activities of the lab. Students access these labs through any
standard web browser.

Assumptions	

This documentation is intended for those who will have the responsibility of installing and
configuring the WLab software, and who will then be responsible for providing support to
tutors. The following is assumed on the part of the system administrator:

• They are familiar with the concept of virtualisation and virtual machines

• They have experience of managing a virtualisation solution at the backend, such as
VMWare or Hyper-V

• They have experience of managing web server solutions, and know how to perform
basic administration tasks (e.g. stop, start) on a web server.

• They understand the implications of making changes to an institutional firewall,
and are either capable of making such changes themselves or arranging for someone
else to make them

• They are comfortable working at a command line level and editing configuration
files.

This documentation will also be useful to developers who wish to make changes to the WLab
software, as they will need to know how to configure a new installation.

It is very important that any potential system administrator of a WLab system
reads, understands and is aware of the implications raised by this document, and
by the manner in which WLab operates. This will prevent inevitable support woes
further down the line!

How	 WLab	 operates	

From a system administrator’s point of view, the most important thing to know is that WLab
will dynamically create clones of virtual machines as and when they are required. When a tutor
designs a lab exercise, they will make a clone of an existing virtual machine, and then modify it
to suit the needs of the lab. This modified clone is then referred to as a tutor VM.

When a student connects to a lab, WLab will automatically create a copy of any tutor VMs the
lab may contain, exclusively for that student’s use. This means that, depending on class sizes,
WLab may create dozens or even hundreds of virtual machines for a given lab exercise.
However, these VMs use differential disks, so should not take up great amounts of disk space.
More discussion of such considerations takes place in System Requirements.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 132	 September	 2010	

Responsibilities	 of	 a	 WLab	 system	 administrator	

Above and beyond the normal requirements for administering a web-based application,
administering a WLab system comes with a number of other responsibilities.

• For the WLab application to be useful there must be at least one backend VM available
to tutors to clone in the very first instance – otherwise they will not be able to author
their tutor VMs. The system administrator will need to author useful VMs, and
configure them accordingly. This is discussed in more detail later.

• If one were to clone a virtual machine several times, and then start up all the clones
simultaneously issues would almost certainly arise because they would have identical
network configurations. On Windows VMs in particular, running several machines with
the same computer name can mean that none of them will be able to access the network
properly.

Consequently, the last activity a tutor undertakes when finalising a tutor VM is to make
sure that, on the next reboot, the Windows computer name is made unique. In the tutor
documentation this is referred to “making the VM safe” and tutors will expect you to
provide instructions on how they can achieve this. The procedure will vary, depending
on the approach you choose. Further discussion on this subject and exemplar
instructions “making VMs safe” for tutors can be found in Dealing with WLab Virtual
Machines.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 133	 September	 2010	

System	 requirements	

At the current time, WLab requires the following:

• A web server capable of delivering Java servlets and JSP pages. Tomcat and Glassfish
have been tested. Tomcat is assumed in this document.

• Access to a Microsoft Hyper-V virtualisation server.
• Access to an LDAP directory service for authentication.

While the application requires access to a Hyper-V server (which inherently requires a Windows
Server installation), WLab itself can be hosted on any platform, and has been tested on all three
of the major operating systems (i.e. Windows, OS X and Linux).

The WLab application must be run on a server that is on the same physical network as the
Hyper-V server, with no intermediate routers in between. Ideally, your configuration should
have the Hyper-V server and the Tomcat server that runs WLab both allocated static IP
addresses. VMs should then obtain IP addresses via DHCP on the same subnet. For example:

Hyper-V server: 192.168.1.5
Tomcat/WLab server: 192.168.1.6
Jumpgate server: 192.168.1.7

(this is explained later)
DHCP range: 192.168.1.10 – 192.168.1.210

(gives room for 200 VMs)

Where possible it is recommended to allocate a dedicated Hyper-V server to WLab, simply
because of the number of dynamically created virtual machines involved.

Consider a course with 20 students. The tutor has created 8 lab exercises for this course, each
divided into 4 stages. This means that there will be a maximum of 8 x 4 = 32 tutor VMs. These
will then be cloned for each student, i.e. 32 x 20 = 640. Thus the total number of VMs that will
be created for this – rather small! – course is 672.

This number is not as enormous as it may sound in terms of system resources – assuming that
the students only run 1 VM at a time, the worst case scenario is that 20 of VMs would run
concurrently. The VMs also use differential disks, so the amount of disk space occupied will not
be excessive. However, if this number of VMs were created on a production Hyper-V server that
also contained other, non-WLab VMs, it would become impossible to administer these non-
WLab VMs among the “noise”.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 134	 September	 2010	

Setup	 and	 Configuration	

Initial	 Installation	

These instructions assume that you are using Tomcat. If you are using an alternative servlet
container, you will need to adapt what follows accordingly – consult the documentation for your
servlet container for further details.

1. Download the latest WLab WAR file from the WLab website

(http://www.paulneve.com/wlab/WLab.war).
2. Stop your Tomcat server.
3. Place the WAR file into your webapps directory.
4. Restart your Tomcat server. This will explode the WAR file and create a directory called

WLab in your webapps directory.
5. Stop your Tomcat server. If you wish, you can now delete the WAR file from webapps.

Tailoring	 the	 configuration	 file	

In the new WLab directory, there should be a conf directory. This contains two XML files,
application-properties.xml and strings.xml. The former is the main configuration file,
which must be edited to suit your environment.

This file is divided into sections:

• General application parameters
• Hyper-V server parameters
• Data access parameters
• Authentication/directory server parameters
• Auto-suspension parameters

Apart from the latter section, the configuration sections all follow a similar pattern. As an
example, the below is the default authentication section:

<bean id="authenticationAccess"
class="org.paulneve.wlab.authentication.AuthenticationAccessLdapImpl">
 <property name="ldapServer" value="192.168.1.7"/>
 <property name="ldapPort" value="389"/>
 <property name="adMode" value="true"/>
 <property name="adDomain" value="demoserver.local"/>
</bean>

The parts marked in red must NOT be changed. The blue parts show configurable settings –
although again, you should not alter these. The areas you can – and indeed, will have to – alter
are shown in green.

Compulsory	 configuration	 settings	

The following settings will almost always need to be changed before WLab will run in your
environment. Before proceeding any further, you MUST configure these:

• General application parameters

o defaultVncPassword

When you come to configure the virtual machines for your tutors to clone, you will need
to install VNC. You should standardise on a single VNC password across all WLab VMs,
and this parameter should contain this standard password.

o adminLogin

This should be set to the login name of a user on your directory/domain who will have
responsibility for administrating the WLab system. This user can then log into WLab
and create additional tutors. If they wish, they can specify that such additional tutors
are themselves superusers (which means they too can create tutors).

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 135	 September	 2010	

• maxConcurrentVMs

This value indicates how many VMs can be run at the same time before WLab will
prevent students from starting any more. In most cases, the default value of 5 will be too
low and should be changed.

The value comes directly from the virtualisation backend, and thus includes any VMs
that may have been started manually i.e. outside of the WLab system. If, for example,
there will always be 5 VMs running on your virtualisation server regardless of anything
WLab might start, you should take such “permanent” VMs into account.

• Hyper-V server parameters

o username / password

This should be set to a user who has administrative access on the Hyper-V server, i.e.
can stop/start/create/delete VMs. This MUST be in the form domain\username. The
password parameter should be set to this user’s password.

o serverName
This should be set to the IP address or domain name of the Hyper-V server.

o diskPath
This should be directory where the Hyper-V server stores its virtual hard disks. Note
that this is relative to the Hyper-V server! If you the configuration of Hyper-V is
unchanged from the default there is no need to change this.

o octet1 / octet2 / octet3
These three values should be set according to the IP subnet where the virtual machines
will be found. If your configuration was as the example IP addresses given in System
Requirements, the default values of 192, 168 and 1 would be appropriate. When the
system attempts to locate a VM, it will search the entire class C range for it.

• Data access parameters

o dataAccess

This should be set to a fully-enumerated directory where WLab can store its data files.
An example might be /usr/share/WLabDataFiles. This should be read/writeable by the
Tomcat process. Note that this is relative to the WLab server. If the directory does not
exist WLab will attempt to create it. If in this event WLab cannot create it, an error will
occur.

• Authentication access parameters

o ldapServer / ldapPort

Set the IP or domain address and port number of the LDAP directory server here. Note
that this does not have to be on the same subnet as the VMs and other servers used by
WLab as long as the Tomcat server can establish a connection to this address.

o ldapConnectionString
Set the LDAP connection string here. This will be used to perform a directory search on
the LDAP server, so as to ascertain whether or not the user name entered is a valid user.
It must contain the placeholder *USER* - the user name entered will be inserted into
the connection string at this point. An example value for this setting might be:

uid=*USER*,cn=users,DC=myuniversity,DC=ac,DC=uk

This setting is ignored if you are using Microsoft Active Directory, and adMode is set to
true (see below).

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 136	 September	 2010	

o ssl
Set this value to true if the server/port combination you are connecting to uses SSL. If
your LDAP server uses a self-signed certificate, you will also need to follow these
instructions:

1. Download the InstallCert.java program, available from
http://blogs.sun.com/andreas/resource/InstallCert.java. Compile it with
javac InstallCert.java.

2. Your Java keystore is usually found in the /lib/security/ directory of your
JRE, and is called cacerts. You might want to make a backup before making
changes to it.

3. Run the command java InstallCert [server name]:[LDAP SSL
port] [keystore location]. Alternatively, if you omit the keystore
location parameter, it will create a file in the current directory called
jssecacerts. You might prefer to do this, and then manually move/rename
the file produced into the correct location.

o adMode

Set this value to true if you are connecting to Microsoft Active Directory. If this is true,
ldapConnectionString is not used.

o adDomain
Set this value to the Active Directory domain name. This should be fully specified, e.g.
myuniversity.ac.uk rather than just myuniversity. Ignored if adMode is false.

Optional	 configuration	 settings	

The following settings do not have to be altered for WLab to run, but you may wish to tailor
them to suit your needs and environment:

• General application parameters

o port

If you will run VNC on non-standard ports within your virtual machines, you can specify
an alternative port number here.

o autoSuspendPeriod
If a student overruns their allocated runtime, their VMs will be suspended and they are
prevented from starting new VMs for this period of time (specified in minutes).

o defaultStudentConcurrentVMs
Specifies how many VMs a student can run at the same time. Note that this can be
overridden on a per-student basis by tutors.

o defaultStudentMaxBookings
Students can book time on the system during which they will be guaranteed an
uninterrupted runtime slot. These bookings last one hour. The value in this parameter
value specifies how many such bookings a student may make in advance. This can be
overridden on a per-student basis by tutors.

o defaultStudentMaxRuntime
This specifies how long a student may run their VMs for before the student will
automatically suspend them (so as to prevent a student from “hogging” the system). The
value is in minutes, and can be overridden by tutors on a per-student basis.

• Auto suspension parameter
This configuration section is formatted slightly differently to the others:

<bean id="vmSuspender" class="org.paulneve.wlab.utilities.VmSuspender"
autowire="byName">
<constructor-arg type="int"><value>10</value></constructor-arg>
</bean>

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 137	 September	 2010	

Only the number between the <value> tags shown in green should be altered. The value
specifies in seconds how often the system will poll for overrunning virtual machines.
Increasingly this value reduces server load, but might result in less accuracy. You should
increase the value proportionally as the number of likely concurrent VMs increases – a rule
of thumb is to make this value double the maximum number of concurrent VMs.

Note that any changes to application-properties.xml require a restart of Tomcat
before they take effect. We also recommend you back up your application-
properties.xml. When upgrading to a new version of WLab, your version of the file
will be replaced with the default. If you have no backup, you will have to redo all
your changes.

Additional	 configuration	 for	 Windows	 Server	 2008	 R2	

Windows Server 2008 R2 introduced additional security features which require additional
configuration before WLab can communicate with the Hyper-V server:

1. Make sure that Windows Firewall with Advanced Security has the rules for COM+

Network Access and COM+ Remote Administration enabled. They will be disabled
by default.

2. You will need to change the permissions on the registry key
HKEY_CLASSES_ROOT\CLSID\{76A64158-CB41-11D1-8B02-00600806D9B6}. First,
change the owner of the registry key to your own user login; this will allow you to make
changes to the permission of the key. Then, modify the read/write permissions on the key,
and ensure that the user that your Tomcat server runs as has Full Control.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 138	 September	 2010	

Adding	 tutors	 to	 the	 system	

With the configuration file modified as appropriate, you should now be able to log in to the
system and add tutors. WLab will be published at the URL

[your Tomcat server base address]/WLab/wlab.html
	
Open a browser and go to this URL. You should be able to log in as the user who was set in the
adminLogin parameter. Once successfully logged in, you should see the following screen:

Figure 82

Click the option Tutors. You will be presented with a list of the tutors currently in the system –
there should only be the Initial System Administrator shown. Here, you can add a new tutor;
click this option to bring up the dialogue box below:

Figure 83

The login ID cannot be modified once a tutor has been entered, but the tutor name and their
superuser status is changeable. Making a tutor a superuser will also give them the ability to
create and delete new tutors.

Existing tutors can be modified and deleted from the tutor list, by clicking the pencil and
trashcan icons respectively.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 139	 September	 2010	

Dealing	 with	 WLab	 virtual	 machines	

As noted previously, when creating a tutor VM tutors will need at least one VM to precede
theirs, as their new VM must be cloned from an existing one. If no VMs pre-exist on the
virtualisation backend, then WLab will not be usable because tutors will not be able to create
VMs for labs.

The tutor documentation assumes that a VM exists that contains a basic installation of Windows
XP, and nothing else. The example they will work through takes them through authoring a
WLab lab exercise using this XP VM as a starting point. Therefore, this XP VM is the very least
tutors will need to get started. Realistically, if you are serious about using WLab at your
institution, you will probably need to create several VMs depending on the courses WLab will be
used for, and the needs of the tutors.

We recommend that you liaise with your tutors at an early point of your WLab endeavours, and
take the time up front to set up a suite of “foundation” VMs that the tutors can then build upon.
For example, if your tutors are likely to be teaching Java, you might set up a VM that contains
the various IDEs your institution uses and a known-good instance of the JDK. If you did not,
and instead expected tutors to take the bare bones XP installation, then by themselves install the
JDK, then install and set up Eclipse or NetBeans, almost certainly they would run into
difficulties. By not making the early effort you will only be creating more support calls for
yourself in the future.

You can use the usual Hyper-V management tools to build these VMs. For the most part, VMs
that you intend for use by tutors in WLab are no different to any other Hyper-V VM you might
create. However, there are several additional factors you will need to consider:

VNC	 installation	

The TightVNC Java applet is used to embed a VM console within WLab-generated web pages.
Consequently, all VMs for use with WLab must have a server installed and set to start on boot. If
you do not install such a VNC server, the tutor will not be able to connect to the
virtual machines through the WLab web interface.

For Windows VMs, it makes most sense to use TightVNC and thus match the VNC flavour being
used by the client. TightVNC server – available from http://www.tightvnc.com/ - should be
installed within the VM as a service, and the default VNC password for each VM should match
that set on the defaultVncPassword parameter in application-settings.xml. Similarly, if
you decide to change the VNC port number, you will also need to update the port parameter.
These settings MUST be consistent across every VM you intend for use in WLab.

A common mistake is to leave the Windows Firewall on inside your VMs. At the very least, in
the firewall settings within the VM be sure to permit traffic on the VNC port you
intend to use (usually 5900 if you have not changed anything). In many cases it may be
simpler to disable the Windows Firewall on the backend VMs your tutors will use.

On Linux VMs, there are a multitude of VNC server scenarios, and it is assumed that a system
administrator who is au fait with Linux would be able to set up an appropriate solution.

“Making	 VMs	 safe”	

During its lifetime, a tutor VM will be cloned many times – once for each student. In the
majority of cases, these clones will be used concurrently (unless it is a one student class!). If
from a network perspective the clones are not unique then the students will experience
connectivity problems. As noted previously, when a tutor has finished designing their VM, their
last act should be to ensure that, upon the first boot of any clone, the clone makes itself unique.

If you are using DHCP, this should not be an issue in terms of IP addressing. However, on
Windows workstations there is also the computer name to consider – computer names must be
unique. Some kind of script is therefore required that will change the computer name of a newly
cloned VM to a unique (random) value. In the tutor documentation this is referred to as

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 140	 September	 2010	

“making the VM safe” and it is stressed upon them that this must always be the last task they
perform in a tutor VM before they attempt to publish it in a lab stage.

TUTORS WILL EXPECT YOU TO PROVIDE THEM WITH DOCUMENTATION AS
TO HOW THEY SHOULD PERFORM THIS TASK.

The recommended Microsoft method of achieving this is by using Sysprep; however, this takes
far too long to complete for it to be usable in WLab. When a student accesses the next stage of a
lab exercise it is not acceptable to subject them to a 10 minute delay while Sysprep executes.

The best results have been achieved using Dave Clarke’s wsname script, which can be found at
the URL http://mystuff.clarke.co.nz/MyStuff/wsname.asp. The following is one method of
using wsname to provide a facility for making a VM safe:

1. Create a folder c:\wsname on the VM.
2. Place the wsname.exe file into this folder.
3. Create a file called rename.old in this folder – this file should contain the following:

@echo off
c:\wsname\wsname /n:WLAB-$RANDOM[10]
shutdown –s –f –t 1
del c:\wsname\rename.bat

4. Open the Group Policy Editor (select Run from the Start Menu, and type gpedit.msc)
5. Select Local Computer Policy / Computer Configuration / Windows Settings

/ Scripts. Double click the Startup option in the right hand pane.
6. Click Add, then type c:\wsname\rename.bat. (Note the suffix, .bat and NOT .old as

per the file created in step 3)

This configuration means that all a tutor needs to do to make a VM safe is to copy
c:\wsname\rename.old to c:\wsname\rename.bat as their last action before they close
the VM down. Any clones that are made after this point will start up, find the script in
c:\wsname and execute the script.

A sample set of instructions for tutors to use this script might be as follows:

Tutor addendum – Making your tutor VMs safe

It is very important that, when you have finished configuring a Tutor VM, you make it safe for
use by a student.

To do so, follow these steps:

1. Click on the Start menu at the bottom left of the screen.
2. Click Run.
3. Type cmd and press Return.
4. Type cd \wsname and press Return.
5. Type copy rename.old rename.bat and press Return. Note there are no spaces

between the periods (.) and the letters around them. If successful, you should see the
text 1 file(s) copied.

6. Type exit and press Return.

Your tutor VM has now been made safe. You should now immediately shut it down, and it can
now be used in a lab stage.

Note that a student will be provided with the same environment as the tutor. You might be
tempted to create a batch file that performs these tasks, place it on the VM desktop, and tell
tutors “to make your VMs safe, click the icon on the desktop”. However, such a desktop icon
would also be visible by students when they run their lab exercises. Some degree of obfuscation
is therefore desirable to avoid support issues originating from the student body.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 141	 September	 2010	

Here is a detailed breakdown of the steps in the script:

@echo off
Suppresses output to the console.

c:\wsname\wsname /n:WLAB-$RANDOM[10]
Uses wsname to change the computer name to WLAB-[a 10 character random string]

shutdown –s –f –t 1
Issues the command to shut down the virtual machine in one second’s time – changes to
the computer name only take effect after a reboot.

del c:\wsname\rename.bat

 Delete the script so it is not executed on subsequent reboots.

If you do not wish to use this technique, you should note that WLab assumes that when a tutor
VM is cloned in order to create a new VM for a student, the following will occur:

• The VM will boot itself normally,
• It will change its computer name to a random value,
• It will shut itself down. Note that this is a complete shut down, i.e. halt – not a

restart.
• WLab then sends a restart request to the VM.
• The VM boots with the new computer name settings,
• The student is connected to the VM and they can resume their lab.

The point in bold is crucial, and you need to make sure that your alternative method of changing
the computer name shuts the VM down completely at this point, rather than just issuing a
restart. Also, if you use an alternative method of “making safe” bear in mind you will also need
to provide the tutors with documentation for it. The tutor documentation explicitly mentions
that you will provide them with such instructions, and advises them not to attempt to use the
system if they do not have them, or do not understand them.

There may be instances where the “making safe” procedure is not necessary. If a tutor is
designing a VM that has no need for Microsoft networking connectivity you could remove the
Microsoft networking components (you would still need TCP/IP in order to establish a VNC
connection), and there would be no need for the “making safe” procedure. Similarly, this would
probably not be required on most Linux configurations (assuming that DHCP was being used
and SAMBA was not). If, for some reason, a VM does not require the “making safe” procedure,
the tutor should be advised to change the default setting for Boot cycles after cloning from 2
to 1 when they configure their VMs. Details of where to find this setting are in their
documentation.

VM	 suffixes	

When WLab creates a new virtual machine, it will use one of two suffixes:

BASE- a tutor-authored VM, i.e. a tutor VM
DYNAMIC- created by the system for use by a student, cloned from a tutor VM

Do not delete any such virtual machines via Hyper-V’s own management tools.
This may cause errors in WLab.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 142	 September	 2010	

Configuring	 access	 from	 outside	 your	 institution	

When a student connects to a lab session, and particularly a VM within that lab session, WLab
determines the VM’s IP address and then builds a web page with the VNC client application
embedded. Part of this web page is a parameter to the VNC applet which specifies the IP address
of the VM, so as a VNC connection can be made to it.

This is fine if the student’s client computer can “reach” this IP address, but in many cases – and
with certainty if they are running their lab from outside your institution – there will be no direct
route to the address. This is illustrated in Figure 84.

Also shown in Figure 84 is the traditional method of creating a route through a firewall so that
external clients can access an internal web server. One can thus easily arrange external access to
the web application aspect of WLab. However, one cannot do the same for the dozens of VMs
that WLab entails. Aside from the security implications, these addresses are not consistent and
will frequently change.

In order to provide a route through institutional firewalls to WLab VMs, we have made use of an
adapted instance of the Jumpgate project (http://jumpgate.sourceforge.net). Jumpgate runs on
a server with a static IP address behind the firewall. A single external port is routed to a
specified internal port on this server. Jumpgate then dynamically routes traffic through to the
appropriate WLab VM. This is illustrated in Figure 85.

Figure 84

Figure 85

	
How	 to	 use	 Jumpgate	 with	 WLab	

Download the appropriate version of Jumpgate for your platform from the WLab website.

Windows: http://www.paulneve.com/wlab/jumpgate-windows.zip
OS X: http://www.paulneve.com/wlab/jumpgate-mac.zip

On OSX, the zip file will contain a single executable simply called jumpgate. On Windows, you
will see jumpgate.exe and cygwin1.dll – the DLL file must be kept in the same directory as
the EXE file.

Unzip the zip file in a convenient location on the server where Jumpgate will be located.

On Linux, because of the many differences between distributions, you should build Jumpgate
from source. Follow these instructions to do so:

Web browser

VNC
client

Java applet)

the
Internet

Firewall

web server

httpVNC
protocol

Virtualisation Layer

VM VM VM VM VM VM VM VM VM

Internal Network

External Network
http

VNC
protocol

Web browser

Firewall

Jumpgate

web server
(Tomcat)

HTMLextended VNC
protocol

Virtualisation Layer

VM VM VM VM VM VM VM VM VM

Internal Network

External
Network

VNC protocol

HTML page

WLab web
application

Modified
VNC client

Java applet)

Lab stage
resources

(displayed in
an IFrame)

the
Internet

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 143	 September	 2010	

• In a command line or terminal, create a work directory (e.g. JumpgateSource and cd to it.
• Type svn co svn://wlab.paulneve.com/Jumpgate . - be sure to include the period .

at the end of that command!
• Type make generic
• You should end up with an executable file called jumpgate in the directory.

You can now start Jumpgate with the command

jumpgate –l [port number] –i –p [password]

or on Windows:

 jumpgate.exe –l [port number] –i –p [password]

The port number can be any number that is not being used by other network services on the
server running Jumpgate. Higher (four digit) values are recommended to avoid unexpected
“collisions” with services you may not have taken into account. The password can be whatever
you like and pertains to Jumpgate only. It is to ensure that if anyone were to telnet directly to
your Jumpgate server, who had read the source code and knew what response it was expecting,
could not then connect to other machines on your internal network.

You should now configure an external IP address and port on your firewall. This will need to
route traffic received through to the internal IP address of the Jumpgate server on the port you
specified in the Jumpgate command line.

Finally, you need to configure WLab’s application-properties.xml as follows:

jumpgate should be set to true
jumpgatePort should contain the external firewall port number
jumpgateServer should contain the external server domain name or IP address
jumpgatePassword should contain the password set in the Jumpgate command line

It should be emphasised again that the port and server settings in the configuration file should
correspond to the external address configured on your firewall, not the internal address of the
Jumpgate server.

Note that Jumpgate should stay resident in memory. However, it does not specifically have a
shutdown parameter and will continue to run unless terminated using whatever means your
operating system provides (e.g. the kill command on a UNIX-like OS, or using End Task in
Task Manager on Windows).

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 144	 September	 2010	

Modifying	 WLab	 using	 the	 strings.xml	 file	

On your Tomcat server, in the webapps/WLab/conf directory there is a second XML file,
strings.xml. This contains all of the string (text) values that a user of WLab sees. They can be
modified as you see fit, e.g. if you wish to translate the application into a language other than
English.

strings.xml is ordered by the WLab page the values correspond to. For example, the page
studentlablist.html – i.e. the initial screen which greets a student and lists their labs when they
log in – has a section in the file, labconsoleview.html has a section, and so on.

The ordering of this file is probably organised more with developers in mind than WLab system
administrators, so the simplest way for you to find a particular value you wish to change is to
locate it within the WLab application itself, and then do a search in strings.xml for it.

Each value is contained in an XML element such as the following:

<entry key="retMainMenu" value="Return to main menu"/>

The red part of the XML element should not be changed – the green part can be modified as you
see fit. Above or near each element, you should find a comment that explains its purpose.

Longer values may run across several lines, such as:

<entry key="tooManyBookings" value="
Sorry! You have already exceeded your maximum allowed
number of bookings!
"/>

In these cases you may split the value across as many lines as you need for easy of reading.
However, be very sure that you maintain the final closing “/> marker.

For values that contain HTML, the < and > characters have to be replaced with [and], so as to
avoid breaking surrounding XML markup. An example is highlighted in blue below:

<entry key="studentLabListBookingBlurb" value="
Alternatively, you can book guaranteed time on the system
by using the [a href='BOOKINGPAGE']booking page[/a]. You can
book hour slots of time on the system, either spread out, or
in a consecutive block. During this booked time your labs will
never be shut down.
"/>

Some values may also contain placeholders, such that marked above in black. In most cases you
must retain these placeholders somewhere in the string if you modify it. The comment above the
element will explain such requirements. Similarly, any restrictions on elements that contain
HTML will also be detailed in the comments.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 145	 September	 2010	

Documentation	 for	 Developers	
	
Introduction	

WLab is a web application that provides a virtual lab environment for any workshop activity that
requires the use of a computer. WLab makes use of virtual machines to deliver an IT
environment in which a student can perform the tasks involved in the lab exercise, regardless of
the local computer they are using.

WLab allows tutors to design and publish lab exercises that are divided into stages; each stage
contains a complete virtual machine, along with – if required –appropriate static learning
material that complements the activities of the lab. Students access these labs through any
standard web browser.

Assumptions	

This documentation is aimed at developers, i.e. those who intend to either modify or add to the
functions of the application by modifying its source code. It is assumed that:

• You are familiar with the Java language and its conventions
• You are familiar with working in an integrated development environment (e.g. Eclipse,

NetBeans, etc)
• You are comfortable using revision control and source code repository software such as

SVN
• You are comfortable using a command line, and compiling code from such an interface

Developers will also need the Documentation for System Administrators, and it is assumed that
developers will at least have read that document before they start trying to make use of the
information contained in this document. At some point, if you intend to run WLab you will need
to modify the application-properties.xml configuration file as per the directions given in
Documentation for System Administrators.

	

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 146	 September	 2010	

Preparing	 Windows	 for	 WLab	 development	 –	 installing	 Cygwin	

Note: if your development environment will be running on a UNIX-like OS such as Linux, OS
X, etc, you can skip this section.

Most of the tools used to manage the WLab source code come from a UNIX pedigree. The
simplest way to prepare an appropriate development environment under Windows is to install
Cygwin (http://www.cygwin.com). Cygwin provides a simulated UNIX environment on
Windows, and also includes most of the tools one needs to work on WLab.

Download the latest version of Cygwin from the website and run its setup program. When
prompted to select packages, you should ensure the following packages are included. (To select a
package, click the text “Skip” and it should change to a version number).

• gcc (enter the search string gcc and select Devel / gcc-core)
• make (enter the search string make and select Devel / make – it should be towards the

bottom of the packages listed)
• Subversion (enter the search string subversion and select Devel / subversion – it

should be towards the top of the packages listed)

Once you have selected these packages, click Next and allow the Cygwin installer to proceed
through installation.

When it is complete, it should have installed the program Cygwin Bash Shell. Use this instead
of the regular Windows command line when working on WLab development. Note that this is a
simulated UNIX command line, so some conventions are different. Of most importance the the
fact that the directory delimiter is forward slash / rather than backslash \. For more details of
working in Cygwin’s Bash shell, try the excellent Bash Guide for Beginners, available at
http://www.tldp.org/LDP/Bash-Beginners-Guide/html/.

Obtaining	 the	 WLab	 source	 code	

The WLab source can be obtained from its Subversion repository at svn://wlab.paulneve.com.

Create a directory that will store the WLab source, navigate to it in a command line11, and then
issue the following SVN command:

svn co svn://wlab.paulneve.com/ .

This will download a complete set of the WLab code, including the WLab application itself, and
the modified versions of TightVNC and Jumpgate needed for its operation. If you only want
WLab itself, and have no intention of working on the other components, append WLab to the
end of this command line – note that this is case sensitive, so capital-W, capital-L, lower case A
and B.

Building	 the	 WLab	 WAR	 file	

WLab uses Apache Maven (http://maven.apache.org/) to manage its dependencies and to
simplify the build process. If you do not have Maven installed you should install it now.

To build a WAR file for installation on Tomcat or other servlet container, navigate to the WLab
directory in a command line, then issue the following commands:

mvn clean
mvn compile
mvn jibx:bind
mvn war:war

If you receive a build error, check that you are in the correct directory. There should be a file
called pom.xml present. A common error is when the initial directory created to hold the

11	 We	 will	 assume	 from	 now	 on	 that,	 on	 Windows,	 “a	 command	 line”	 means	 “the	 Cygwin	 Bash	 shell”.	

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 147	 September	 2010	

source is itself named WLab – this would result in the directory structure WLab/WLab, and
here it would be the second level down where the Maven commands should be issued.

The first time you use Maven for WLab, it may take some time as the required libraries are
downloaded. After each step, you should see (among other output) the result BUILD
SUCCESSFUL. Following a successful build, you can find the resulting WAR file in
WLab/target.

Building	 Jumpgate	

The build process for Jumpgate uses the more standard make command, and is simply a case
of navigating into the Jumpgate directory and issuing the command:

make generic

Once the process is complete, you should find that you have a binary executable called simply
jumpgate in the current folder (jumpgate.exe on Windows). Note that unlike the other
components used in WLab which are Java based, Jumpgate is written in C, so the binary will
only run on the platform it was originally compiled on.

If you are building a version for Windows, and you intend to run the binary on a machine that
does not have Cygwin installed, you will need to include the cygwin1.dll file along with
jumpgate.exe. The DLL file must be present in the same directory as the EXE at runtime.

Building	 the	 TightVNC	 client	 applet	

The VNC client applet also uses the make command. Navigate into the TightVNC-Java-
pnmod/src directory, and in a command line, simply type:

make

You should end up with a binary in the same directory, vncviewer-pn.jar.

For this binary to be useful in a WLab context, it must be digitally signed with the jarsigner
tool. If not, the Java security model restricts any connections from the applet to the web server
from which it was delivered. This would mean that the applet would not be able to establish a
connection to any WLab virtual machines. The web page
http://wiki.plexinfo.net/index.php?title=How_to_sign_JAR_files gives a quick overview of
how one can sign a JAR with a test key, for those not familiar with the process.

Javadoc	

A Javadoc is available for the application at http://www.paulneve.com/wlab/javadoc.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 148	 September	 2010	

How	 to	 prepare	 the	 Eclipse	 IDE	 for	 WLab	 development	

To build an Eclipse project for WLab, follow these steps:

1. You will need to install a number of Eclipse plugins:

Plugin name Source Repository URL
Maven Integration for Eclipse http://m2eclipse.sonatype.org/sites/m2e
Maven Integration for WTP http://m2eclipse.sonatype.org/sites/m2e-extras
JIBX plugin http://jibx.sourceforge.net/eclipse

Many Eclipse installations will have the base Maven integration pre-installed, but not
the WTP integration. This may cause problems when installing the latter if the versions
do not match, and it may be necessary to upgrade the former before proceeding.

2. Create a new Eclipse workspace.

3. Navigate to the directory of the Eclipse workspace you just created in the command line.
Check out the WLab source from SVN into this workspace using the command:

svn co svn://wlab.paulneve.com/ .

4. In your new Eclipse workspace, select Import / Maven / Existing Maven Projects.

Browse to the WLab folder which will have been created by the SVN checkout. Click
Finish.

5. Wait while Eclipse and the Maven plugins set up the project.

6. Enable JIBX by right-clicking on the WLab folder in the project folder, and selecting
JIBX. An error will appear; this is normal. To fix the error, right-click on the WLab
folder, select Properties, and in the JIBX setting change JIBX Mappings Folder to
src/main/java. Disable and then re-enable JIBX to make the change take effect.

7. “Create” a new server to run the application by clicking on the Servers tab, then right-

clicking in the white space in the bottom right pane and selecting New server. Choose
an Apache Tomcat 6.0 server. Browse to your Tomcat install directory (if you don’t have
Tomcat installed, then you can just download it from Apache, unzip it and point Eclipse
at the resulting directory). Click Finish.

8. Right-click on the Tomcat 6.0 Server at localhost which will have appeared in the

bottom right pane, and select Add and Remove. Click WLab and use the Add button to
publish it onto the development server.

9. Edit the file in src/main/webapp/conf/application-properties.xml to suit

your environment. Consult the system administration documentation for details
regarding the settings to be found in that file.

10. The application can be started by selecting the server from the appropriate tab, and

clicking the green “play” button. The application should be usable at http://[your IP
address]:8080/WLab/wlab.html, assuming a standard configuration. It is advised to
stop the server before making code changes.

How	 to	 prepare	 the	 NetBeans	 IDE	 for	 WLab	 development	

1. Select Open Project from the file menu and browse to the WLab source folder.

2. That’s it! NetBeans will use the Maven configuration to automatically set the
development environment up for you.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 149	 September	 2010	

Overview	 of	 the	 WLab	 source	 code	

Directory	 structure	 and	 file	 locations	

The directory structure used in the WLab code follows the usual Maven conventions for a Java
web application:

WLab/src/main/java Java classes
WLab/src/main/webapp Web files – HTML, JSP, etc

Spring	 configuration	

The application uses the Spring framework (http://www.springsource.org/) extensively. The
Spring MVC facilities are used in particular; a Java class at the server side processes any input
from the user, then builds a Spring ModelAndView (MaV) object. The MaV includes a reference
to one of the JSP views, and the associated model the view will need in order to display
meaningful data. The diagram below illustrates this:

Figure 86

In order to hide the underlying application architecture from the user, Spring is configured to
map URLs that end in HTML to the MVC model. The JSP view pages can be found in
webapp/WEB-INF/jsp (the obscufated location prevents a user entering a URL ending in
JSP and accessing the page directly, and bypassing the Spring MVC model).

The Spring configuration is split across two files:

WLab-servlet.xml
conf/application-properties.xml

The former contains the various bean configurations for the controller classes. If you add
additional controllers and/or views to WLab, you will most likely need to add a corresponding
entry here. The latter file contains the beans that have user-configurable settings. If you create
alternative implementations of interfaces such as DataAccess or VirtualisationAccess
(discussed later) this file will need to be updated accordingly.

Controller
class

JSP-based view

builds

sends user input

Spring
ModelAndView

object
Model data

HTTP request via
xxxx-view.jsp

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 150	 September	 2010	

Fi
na

l -
 D

at
a

C
la

ss
es

or
g.

pa
ul

ne
ve

.w
la

b.
da

ta
m

od
el

-id
 :

St
rin

g
-n

am
e

: S
tri

ng

W
La

bO
bj

ec
t

-m
ax

R
un

tim
e

: i
nt

-m
ax

Bo
ok

in
gs

 :
in

t
-la

bP
ro

gr
es

sI
ds

 :
St

rin
g[

]
-b

oo
ki

ng
Id

s
: S

tri
ng

[]
-m

ax
C

on
cu

rr
en

tV
M

s
: i

nt
-v

m
Id

s
: S

tri
ng

[]

S
tu

de
nt

-d
at

e
: D

at
e

-s
tu

de
nt

Id
 :

St
rin

g

B
oo

ki
ng

-o
w

ni
ng

La
bI

d
: S

tri
ng

-o
w

ni
ng

Tu
to

rI
d

: S
tr

in
g

-v
m

Id
 :

St
rin

g
-e

nd
Po

in
tV

m
Id

 :
St

rin
g

-r
es

ou
rc

eI
ds

 :
St

rin
g[

]

La
bS

ta
ge

-o
w

ni
ng

Tu
to

rI
d

: S
tr

in
g

-c
ou

rs
eI

d
: S

tri
ng

-la
bS

ta
ge

Id
s

: S
tri

ng
[]

-la
bP

ro
gr

es
sI

ds
 :

St
rin

g[
]

La
b

-b
ac

ke
nd

N
am

e
: S

tri
ng

-la
bS

ta
ge

Id
 :

St
rin

g
-s

cr
ee

nS
iz

eX
 :

in
t

-s
cr

ee
nS

iz
eY

 :
in

tV
M

-u
rl

: S
tr

in
g

R
es

ou
rc

e

-la
bI

d
: S

tri
ng

-s
tu

de
nt

Id
 :

St
rin

g
-s

ta
ge

Pr
og

re
ss

Id
s

: S
tri

ng
[]

La
bP

ro
gr

es
s

U
se

r

-o
w

ni
ng

Tu
to

rI
d

: S
tr

in
g

C
ou

rs
e

-p
ro

gr
es

s
: I

te
m

Pr
og

re
ss

-la
bP

ro
gr

es
sI

d
: S

tri
ng

-la
bS

ta
ge

Id
 :

St
rin

g

St
ag

eP
ro

gr
es

s

-o
w

ni
ng

Tu
to

rI
d

: S
tr

in
g

-r
eb

oo
tA

fte
rC

lo
ni

ng
 :

St
rin

g

Tu
to

rV
M

-o
rig

in
al

Vm
Id

 :
St

rin
g

S
tu

de
nt

A
llo

ca
te

dV
M

 N
ot

St
ar

te
d

 In
Pr

og
re

ss
 F

in
is

he
d

 R
ev

ie
w

in
g

 M
ar

ke
dF

in
is

h
 F

ro
ze

n

<<
en

um
er

at
io

n>
>

Ite
m

P
ro

gr
es

s

-s
up

er
U

se
r :

 b
oo

le
an

T
ut

or

Fo
r b

re
vit

y,
 A

rra
yL

ist
s

1
1

0.
.*

1

1

0.
.*

0.
.*1

0.
.1

0.
.1

0.
.*

0.
.*

0.
.*

1

0.
.*

1

1
1

1

0.
.*

10.
.1

0.
.*

1

10.
.*

0.
.*

1

1.
.*1

WLab	 data	 model	

The WLab data model is implemented by the classes in the org.paulneve.wlab.data package, and
is described by the diagram below:

Figure 87

Associations between data objects are maintained by string values that contain the ID of the
object being referenced.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 151	 September	 2010	

Controller	 class/View	 JSP	 dependencies	

The corresponding controller classes can be found in the org.paulneve.wlab.webui package, and
the table below shows the correlations between the controller classes and the views. For the
most part as a general guideline, *view.jsp is dependent on *Controller.java:

Student UI:

JSP view(s) / controller class(es) Purpose and explanation

labconsoleview.jsp

LabConsoleController.java

Handles the student’s view of a lab exercise. Given a VM ID, the
controller will build the appropriate parameters (e.g. IP address,
screen size, etc) for the VNC applet. It also handles commands
originating from the student via the JSP view, such as snapshot-
related commands. Finally, it handles navigation to other stages of
the lab exercise.

bookingview.jsp

BookingController.java

The view/controller to handle the session booking screen. Much of
the actual functionality of this screen is provided by a combination
of Javascript within the JSP page, plus AJAX calls to some of the
viewless servlets.

wlab.jsp
studentlablist.jsp

WebUIController.java

wlab.jsp provides the initial login screen. The controller handles
authentication. If unsuccessful, an appropriate message is passed
to the view.

Once authentication is successful, if the user is a student, the
controller then returns a ModelAndView object that includes
studentlablist.jsp – essentially “switching” to this view. As part of
the MaV object WebUIController will also supply any details of
timeout countdowns, currently running bookings, status of the
student’s VMs and so on. The view provides the student with
commands to start/stop VMs – these however are handled by one
of the various viewless servlets (discussed later).

vmconsoleview.jsp

VMConsoleController.java

This combination is never used unless you set the vmOnly flag in
application-properties.xml. THIS SHOULD NEVER BE DONE.
The configuration flag and these files are retained solely to show
the evolution of the application through the iterative development
process, for the purpose of an MSc dissertation. Almost certainly,
after the completion of this MSc these files will be removed.

Tutor / Management UI:

JSP view(s) / controller class(es) Purpose and explanation

backendvmlistview.jsp
BackendVmListController.java

This combination generates and displays a list of VMs from the
virtualisation backend. In the JSP view, a tutor may choose to
clone or edit the VMs (this will invoke the viewless servlet
CreateNewBaseVm – discussed later).

backendvmmdview.jsp
BackendVmMDController.java

Provides the metadata page where a tutor can edit the basic
details of a tutor VM. In the UI, this is shown by clicking on the VM
Details tab of editbasevmview.jsp and is embedded there via an
IFRAME.

editbasevmview.jsp
EditVmConsoleController.java

The VM console view, used when a tutor is editing a tutor VM.
Works similarly to the student’s LabConsole view/controller
combination, with options to navigate between stages removed.

labeditview.jsp
LabEditController.java

Provides facilities for a tutor to edit a lab. Much of the functionality
comes via client-side Javascript.

lablistview.jsp
LabListController.java

Provides a list of labs so a tutor can select one to edit. Once one
is selected, routes to labeditview.jsp. Also provides an option to
create a new lab.

labstageeditview.jsp
LabStageEditController.java

Provides facilities for a tutor to edit a lab stage.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 152	 September	 2010	

JSP view(s) / controller class(es) Purpose and explanation

labstagelistview.jsp
LabStageListController.java

Provides a list of lab stages. When one is selected, routes to
labstageeditview.jsp. Also provides an option to create a new lab
stage.

studenteditview.jsp
StudentEditController.java

Provides facilities for a tutor to edit the basic details of a student.
Additionally, the controller assembles and the view displays details
of the student’s progress within the their labs.

studentlistview.jsp
StudentListController.java

Provides the list of students the tutor chooses for editing via
studenteditview.jsp.

tutoreditview.jsp
TutorEditController.java

Provides facilities for a tutor to edit a tutor’s details. This is actually
displayed embedded within the tutorlistview.jsp page via an
IFRAME.

tutorlistview.jsp
TutorListController.java

Lists the tutors in the system, and provides links to edit or delete a
tutor.

wlab.jsp
tutormenuview.jsp

WebUIController.java
TutorMenuController.java

As with students, wlab.jsp provides the initial login screen. The
WebUIController handles authentication, attempt to authenticate
first as a student then as a tutor. If unsuccessful, an appropriate
message is passed to the view.

Once authentication is successful, if the user is a tutor, the
controller then returns a ModelAndView object that includes
tutormenuview.jsp – essentially “switching” to this view.

	
Viewless	 Servlets	

A number of “viewless” – i.e. they have no corresponding JSP page and do not use Spring MVC
– are used for certain common backend tasks (e.g. starting/stopping VMs, etc). For
consistency’s sake, they are configured in the web.xml configuration file to be accessible via a
URL that ends in .html. They can be found in the org.paulneve.wlab.webui package, and are
usually suffixed with *Servlet:

Servlet Purpose and explanation

BasicVMControlServlet.java Accepts a command to start or suspend a VM, based on a
supplied name. Note the name corresponds with the virtualisation
backend, not with WLab’s own internal VM object names. This is
used primarily by studentlablist.jsp to act upon commands to start
or suspend labs.

CreateNewBaseVmServlet.java When a tutor selects the Clone VM option to create a new tutor
VM from an existing VM, this servlet handles the cloning process
and then sees the new VM through the appropriate number of
reboot cycles in order to “make it safe” (see the Documentation for
Tutors and Documentation for System Administrators). The new
VM is created and started, then a new thread monitors the VM
until it shuts down. When the thread detects a shutdown, it re-
starts the VM, and then the thread terminates. Meanwhile, a
redirect will already have been sent to
editbasevmview.jsp/EditVmConsoleController.java. This controller
checks for the existence of this monitoring thread to determine
whether or not the new VM is ready for actual editing to take
place. Once the thread no longer exists it knows the VM is ready,
and establishes a VNC connection.

This servlet is also used when editing an existing tutor VM which
has previously been made safe – meaning that it will also need to
go through the reboot cycles before it can be edited. In this
instance, the process is identical, except that no new VM is
actually created at the start of the process.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 153	 September	 2010	

Servlet Purpose and explanation

CreateNewStudentVmServlet.java This is called when a student attempts to access a Lab Stage that
they do not yet have a StudentAllocatedVM for. A new VM is
created from the tutor VM, and the servlet sees the new VM
through the boot cycle(s).

There are two modes. One is called with an AJAX request, and
occurs when the student is actually running a lab console and
attempts to navigate to a new stage. The code for this is found in
labconsoleview.jsp and in this instance, the servlet itself “blocks”
until the new VM is ready. Because the servlet was called via
AJAX this does not impact the user experience. When the new VM
is ready, the servlet unblocks and sends a success string, which in
turn will fire the onreadystatechange event of the XMLHttpRequest
object – in our case in labconsoleview.jsp, the Javascript function
backFromCreate is called.

The other mode does not use AJAX, and occurs when the student
selects the Create Lab option from their initial list of labs
(studentlablist.jsp). This uses the same process as
CreateBaseVmServlet.java where a thread is started to see the
boot cycle through to its conclusion, a redirect is sent back to
studentlablist.jsp, and the continued existence of the thread is
used to determine whether or not the new VM is ready. When the
thread ends, the VM can be used.

GetCourseDetailsServlet.java Solely used via an AJAX call in labeeditview.jsp. Given a search
parameter, if the servlet can find a course ID that matches, it
returns the course name. If it finds a course name that matches, it
returns the ID. Thus, the servlet is used to populate the course
name in labeditview.jsp if the tutor fills out the course number, and
vice versa.

LogoutServlet.java Does precisely what you’d expect, apart in one instance. If it finds
both a tutor and a student in the session, it assumes that this is a
tutor who has used the preview option to “simulate” the experience
of a student. In this instance, the servlet clears the student from
the session and redirect the tutor to their main menu. Otherwise,
the session is invalidated and a redirect sent to wlab.html (which
will display the login screen ready for a new login).

PreviewLabServlet.java This servlet is called when a tutor selects the preview option
against a student (essentially, it allows them to assume the
“identity” of a student and thus preview their labs from the
student’s perspective). It simply accepts a student ID, then
retrieves the appropriate student and adds them to the session. It
then redirects to wlab.html which, if a student is in the session,
bypasses the login screen and goes directly to studentlablist.jsp.

ToggleBookingServlet.java This servlet is called via AJAX when a student clicks a date/time
slot on the booking form. If the supplied date/time has a booking
already, it is cancelled. If not, one is added.

ToggleStageProgressServlet.java This servlet is called via AJAX from labconsoleview.jsp. Given a
StageProgress ID, if the current status is InProgress it will be
changed to Finished, and vice versa.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 154	 September	 2010	

Classes	 in	 the	 Utilities	 package	

The package org.paulneve.wlab.utilities contains a number of classes that do not directly fit
elsewhere:

Class Purpose and explanation

DesEncrypter.java Adapted from
http://www.exampledepot.com/egs/javax.crypto/PassKey.html.
Primarily used to encrypt the various parameters supplied to the
VNC applet, to avoid end-users selecting “View source” in their
browser and discovering details of the internal network.

GeneralUtils.java General utility class. Methods contained herein are, for the most
part, controller aspects that are used across more than one
controller class.

MacToIP.java Converts a MAC address to an IP address. Works by attempting
to establish a network connection to every possible machine on
the class C subnet configured in the appropriate properties of
application-properties.xml. The ARP cache is then read to find
the corresponding IP address for the desired MAC address. This
is required because there is no guaranteed method of extracting
an IP address from a Hyper-V virtual machine, if it is not running
Microsoft’s Integration Services.

Parameters.java Used to create a singleton into which the values of application-
properties.xml are injected.

Strings.java Used to create a singleton into which the values of strings.xml
are injected.

VmSuspender.java Runs resident in a thread, and monitors running VMs to determine
which of them should be suspended (if, for example, a student
runs beyond their allocated runtime).

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 155	 September	 2010	

Creating	 alternative	 implementations	 of	 WLab	 interfaces	

WLab’s access to the virtualisation backend, authentication, and data storage was written to
enable easy implementation of alternative solutions. Java interfaces and/or abstract classes are
used for each function; implementations are provided to access Hyper-V, an LDAP-based
directory and XML files respectively.

The diagram illustrates these interfaces and the corresponding implementations provided.
Classes shown in white/dotted lines illustrate where future work might potentially take place to
provide alternative functionality.

Figure 2

D
es

ig
n

M
od

el
 fi

na
l

or
g.

pa
ul

ne
ve

.w
la

b.
w

eb
ui

or
g.

pa
ul

ne
ve

.w
la

b.
da

ta
m

od
el

or
g.

pa
ul

ne
ve

.w
la

b.
vi

rt
ua

lis
at

io
n

V
ir
tu
al
is
at
io
nA
cc
es
sV
La
bI
m
pl

V
ir
tu
al
is
at
io
nA
cc
es
sV
M
W
ar
eI
m
pl

+
st

ar
tV

M
(n

am
e

: S
tr

in
g)

+
su

sp
en

dV
M

(n
am

e
: S

tr
in

g)
+

de
le

te
VM

(n
am

e
: S

tr
in

g)
+

cl
on

eV
M

(n
am

e
: S

tr
in

g)
 :

St
ri

ng
+

lis
tV

M
s(

) :
 S

tr
in

g
[]

+
ge

tV
M

St
at

us
(n

am
e

: S
tr

in
g)

 :
St

ri
ng

+
ge

tV
M

IP
(n

am
e

: S
tr

in
g)

 :
St

ri
ng

+
de

le
te

Sn
ap

sh
ot

(n
am

e
: S

tr
in

g,
 in

de
x

: i
nt

)
+

ge
tN

um
be

rO
fC

ur
re

nt
ly

Ru
nn

in
gV

M
s(

) :
 in

t
+

is
Al

iv
e(

na
m

e
: S

tr
in

g)
 :

bo
ol

ea
n

+
nu

m
be

rO
fS

na
ps

ho
ts

(n
am

e
: S

tr
in

g)
 :

in
t

+
re

ve
rt

To
Sn

ap
sh

ot
(n

am
e

: S
tr

in
g,

 in
de

x
: i

nt
)

+
sn

ap
sh

ot
Vm

(n
am

e
: S

tr
in

g)
+

tu
rn

O
ff

VM
(n

am
e

: S
tr

in
g)

<
<
In
te
rf
ac
e>
>

V
ir
tu
al
is
at
io
nA
cc
es
s

or
g.

pa
ul

ne
ve

.w
la

b.
au

th
en

tic
at

io
n

A
ut
he
nt
ic
at
io
nA
cc
es
sL
D
A
PI
m
pl

A
ut
he
nt
ic
at
io
nA
cc
es
sD
BI
m
pl

+
is

Va
lid

U
se

r(
us

er
na

m
e

: S
tr

in
g,

 p
as

sw
or

d
: S

tr
in

g,
 fi

rs
tL

og
in

 :
bo

ol
ea

n)
 :

St
ri

ng

<
<
In
te
rf
ac
e>
>

A
ut
he
nt
ic
at
io
nA
cc
es
s

or
g.

pa
ul

ne
ve

.w
la

b.
da

ta

D
at
aA
cc
es
sH
ib
er
na
te
Im
pl

D
at
aA
cc
es
sX
M
LI
m
pl

+
ge

tT
ut

or
By

Id
(id

 :
St

rin
g)

 :
Tu

to
r

+
ge

tT
ut

or
By

Na
m

e(
na

m
e

: S
tr

in
g)

 :
Tu

to
r

+
up

da
te

Tu
to

r(t
ut

or
 :

Tu
to

r)
: v

oi
d

+
ge

tS
tu

de
nt

By
Id

(id
 :

St
rin

g)
 :

St
ud

en
t

+
ge

tS
tu

de
nt

By
Na

m
e(

na
m

e
: S

tr
in

g)
 :

St
ud

en
t

+
up

da
te

St
ud

en
t(s

tu
de

nt
 :

St
ud

en
t)

: v
oi

d
+

ge
tC

ou
rs

eB
yI

d(
id

 :
St

rin
g)

 :
Co

ur
se

+
ge

tC
ou

rs
eB

yN
am

e(
na

m
e

: S
tr

in
g)

 :
Co

ur
se

+
up

da
te

Co
ur

se
(c

ou
rs

e
: C

ou
rs

e)
 :

vo
id

+
ge

tL
ab

By
Id

(id
 :

St
rin

g)
 :

La
b

+
ge

tL
ab

By
Na

m
e(

na
m

e
: S

tr
in

g)
 :

La
b

+
up

da
te

La
b(

la
b

: L
ab

) :
 v

oi
d

+
ge

tL
ab

sB
yS

tu
de

nt
Id

(s
tu

de
nt

Id
 :

St
rin

g)
 :

Ar
ra

yL
is

t<
La

b>
+

ge
tL

ab
Pr

og
re

ss
By

Id
(id

 :
St

rin
g)

 :
La

bP
ro

gr
es

s
+

ge
tL

ab
Pr

og
re

ss
By

Na
m

e(
na

m
e

: S
tr

in
g)

 :
La

bP
ro

gr
es

s
+

up
da

te
La

bP
ro

gr
es

s(
lp

 :
La

bP
ro

gr
es

s)
 :

vo
id

+
ge

tL
ab

Pr
og

re
ss

By
La

bI
d(

la
bI

d
: S

tr
in

g)
 :

Ar
ra

yL
is

t<
La

bP
ro

gr
es

s>
+

ge
tL

ab
Pr

og
re

ss
By

St
ud

en
tId

(s
tu

de
nt

Id
 :

St
rin

g)
 :

Ar
ra

yL
is

t<
La

bP
ro

gr
es

s>
+

ge
tL

ab
Pr

og
re

ss
By

La
bI

dA
nd

St
ud

en
tId

(la
bI

d
: S

tr
in

g,
 s

tu
de

nt
Id

 :
St

rin
g)

 :
La

bP
ro

gr
es

s
+

ge
tS

ta
ge

Pr
og

re
ss

By
Id

(id
 :

St
rin

g)
 :

St
ag

eP
ro

gr
es

s
+

ge
tS

ta
ge

Pr
og

re
ss

By
Na

m
e(

na
m

e
: S

tr
in

g)
 :

St
ag

eP
ro

gr
es

s
+

up
da

te
St

ag
eP

ro
gr

es
s(

sp
 :

St
ag

eP
ro

gr
es

s)
 :

vo
id

+
ge

tS
ta

ge
Pr

og
re

ss
By

La
bP

ro
gr

es
sI

d(
lp

Id
 :

St
rin

g)
 :

Ar
ra

yL
is

t<
St

ag
eP

ro
gr

es
s>

+
ge

tB
oo

ki
ng

By
Id

(id
 :

St
rin

g)
 :

Bo
ok

in
g

+
ge

tB
oo

ki
ng

By
Na

m
e(

na
m

e
: S

tr
in

g)
 :

Bo
ok

in
g

+
up

da
te

Bo
ok

in
g(

bo
ok

in
g

: B
oo

ki
ng

) :
 v

oi
d

+
ge

tB
oo

ki
ng

sB
yS

tu
de

nt
Id

(s
tu

de
nt

Id
 :

St
rin

g)
 :

Ar
ra

yL
is

t<
Bo

ok
in

g>
+

ge
tL

ab
St

ag
eB

yI
d(

id
 :

St
rin

g)
 :

La
bS

ta
ge

+
ge

tL
ab

St
ag

eB
yN

am
e(

na
m

e
: S

tr
in

g)
 :

La
bS

ta
ge

+
up

da
te

La
bS

ta
ge

(ls
 :

La
bS

ta
ge

) :
 v

oi
d

+
ge

tL
ab

St
ag

es
By

La
bI

d(
la

bI
d

: S
tr

in
g)

 :
Ar

ra
yL

is
t<

La
bS

ta
ge

>
+

ge
tR

es
ou

rc
eB

yI
d(

id
 :

St
rin

g)
 :

Re
so

ur
ce

+
ge

tR
es

ou
rc

eB
yN

am
e(

na
m

e
: S

tr
in

g)
 :

Re
so

ur
ce

+
up

da
te

Re
so

ur
ce

(re
s

: R
es

ou
rc

e)
 :

vo
id

+
ge

tR
es

ou
rc

es
By

La
bS

ta
ge

Id
(ls

Id
 :

St
rin

g)
 :

Ar
ra

yL
is

t<
Re

so
ur

ce
>

+
ge

tB
as

eV
M

Fo
rS

ta
ge

By
Id

(id
 :

St
rin

g)
 :

Ba
se

VM
Fo

rS
ta

ge
+

ge
tB

as
eV

M
Fo

rS
ta

ge
By

Na
m

e(
na

m
e

: S
tr

in
g)

 :
Ba

se
VM

Fo
rS

ta
ge

+
up

da
te

Ba
se

VM
Fo

rS
ta

ge
(b

vm
 :

Ba
se

VM
Fo

rS
ta

ge
) :

 v
oi

d
+

ge
tS

tu
de

nt
Al

lo
ca

te
dV

M
By

Id
(id

 :
St

rin
g)

 :
St

ud
en

tA
llo

ca
te

dV
M

+
ge

tS
tu

de
nt

Al
lo

ca
te

dV
M

By
Na

m
e(

na
m

e
: S

tr
in

g)
 :

St
ud

en
tA

llo
ca

te
dV

M
+

up
da

te
St

ud
en

tA
llo

ca
te

dV
M

(d
cv

m
 :

St
ud

en
tA

llo
ca

te
dV

M
) :

 v
oi

d
+

ge
tV

M
Fo

rS
tu

de
nt

Id
An

dL
ab

St
ag

eI
d(

st
ud

en
tId

 :
St

rin
g,

 ls
Id

 :
St

rin
g)

 :
St

ud
en

tA
llo

ca
te

dV
M

+
ge

tS
tu

de
nt

Al
lo

ca
te

dV
M

By
St

ud
en

t(s
tu

de
nt

Id
 :

St
rin

g)
 :

Ar
ra

yL
is

t<
St

ud
en

tA
llo

ca
te

dV
M

>
+

ge
tN

oB
oo

ki
ng

sB
yD

at
e(

) :
 L

in
ke

dH
as

hM
ap

<
Da

te
, I

nt
eg

er
>

+
de

le
te

(d
el

Ta
rg

et
 :

W
La

bO
bj

ec
t)

: v
oi

d
+

re
lo

ad
(o

 :
W

La
bO

bj
ec

t)
: O

bj
ec

t
+

ge
ne

ric
Ge

tA
ll(

cl
az

z
: C

la
ss

) :
 A

rr
ay

Li
st<
<
In
te
rf
ac
e>
>

D
at
aA
cc
es
s

<
<

us
e>

>

<
<

us
e>

>

<
<

us
e>

>

<
<

us
e>

>

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 156	 September	 2010	

To use any alternative implementations of these interfaces, you will need to modify the Spring
configuration accordingly. If, for example, you provide a new implementation of
VirtualisationAccess, e.g. VirtualisationAccessVMWareImpl, to make use of it the
virtualisationAccess bean in application-properties.xml will need to be modified to refer
to your new class. Any parameters your new class expects to be injected will also need to be
included in the bean definition.

Further information about these interfaces can be found in the Javadoc, available at
http://www.paulneve.com/wlab/javadoc.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 157	 September	 2010	

Documentation	 for	 Students	
	
Introduction	

The WLab system allows your tutor to design and publish practical lab exercises using a
computer, and for you to undertake these exercises via any web browser. You can work either
on- or off-campus, and WLab requires no additional software to be set up on your computer as
long as your web browser can run Java applets12.

Getting	 into	 the	 system	

Your tutor should have given you a URL where you can access the WLab system. Load a web
browser, enter the URL and log in with the appropriate username and password. If your tutor
has not advised you otherwise, this will usually be the same username and password that you
use to access your standard institutional IT facilities.

After a successful login, you should see a screen similar to the following:

Figure 89

At the bottom of the screen, the lab exercises that have been published to you by your tutor will
be listed.

Using	 a	 lab	 for	 the	 first	 time	

The first time you use a lab, it will need to be created by you. You can see that this is required if,
in the Status column against a particular lab, it shows the text not created yet. You will see
that the corresponding Lab Controls will show the single option, Create Lab. Click it; the
screen will change and you will see the text

Creating a new lab. You will not be able to change any other lab
states until this has finished. Please wait.

It will take a few minutes for the lab to be set up for you. When complete the Lab Controls will
then show the option Connect to lab. Select that to access your lab session.

On subsequent accesses, you will not need to create the lab. Instead, you will see the option
Start Lab, and once this is used, you’ll be able to immediately Connect to lab.

12	 If	 you	 are	 not	 sure	 whether	 or	 not	 this	 is	 the	 case,	 visit	 the	 URL	
http://www.java.com/en/download/help/testvm.xml.	 You	 should	 see	 the	 text	 Your	 Java	 is	 working.	

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 158	 September	 2010	

The	 lab	 environment	

The WLab lab environment looks like the below:

Figure 90

At the top left of the screen, a count down is displayed. Each student is allocated a maximum
amount of lab run time that they can use in a single sitting. When you exceed this period, any
labs you have running will automatically be suspended, and you will be prevented from starting
labs for a period of time specified by your tutor (this is to prevent students from “hogging” the
server).

Underneath the countdown, you will see either the text

This stage is in progress. Click here to mark it as finished.

or

You have finished the stage. Click here to re-open it and mark it as
“in progress”.

The use of these options will be discussed shortly.

The two most important aspects of the lab screen are the console, and the resources pane.

The console is on the left hand pane, and is where you will work on the exercise itself. Think of
the console area as like a window on a lab PC – clicking on the appropriate components in this
window should run programs, select menu items, and so on. Your tutor should have provided
you with everything you need in the console to undertake the activities of the lab exercise.

If the tutor has chosen to publish any resources for your lab, they will be shown in the right
hand pane. Resources are static materials that are designed to help you with the activities of the
lab – think of them like an electronic version of the handouts you’d usually receive to
accompany a practical exercise. A resource might explain step-by-step what you need to do to
achieve the lab activity, or simply pose questions and try to stretch your knowledge during the
exercise – this will depend on your tutor! If there is more than one resource, links to navigate
between them will be shown at the bottom of the resource pane (you may need to scroll down).

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 159	 September	 2010	

Using	 the	 Resize	 Console	 Display	 facility	 to	 see	 more	 of	 the	 console	

You can hide the resource pane – and thus give yourself more room to work in the console – by
clicking the divider bar that separates them. This is useful if some of the console window is cut
off in order to show the resource pane. However, this might not be sufficient for some lab
exercises, where the desktop might be so large it simply doesn’t fit into a web browser window.

In this event, you can use the Resize Console Display facility to show more of the console
window. You can make the individual components shown within the console window smaller,
which means more of the console window can be shown within the same space in your browser.
Slide the bar next to the text Resize Console Display and choose a value. 50% will make the
components within the console half as wide and half as high as normal (so they will be a quarter
of their normal size, meaning you can see 4 times as much of the console in the original space).
When you have chosen a value, click Scale and the console will re-size itself accordingly.

Note that the price you pay for this additional screen real estate is a loss of detail – text and
graphics will not as as clear as when the Scale setting is 100%.

Marking	 labs	 when	 they	 are	 finished	

It is very important that, when you have finished a lab stage, you mark it as such by using the
link above the console pane. Your tutor will use this information to evaluate your progress and
WLab has no other way of “knowing” that you have finished this part of the lab exercise. If you
mark a lab stage as finished and later decide this is not the case, you can use the same function
to re-open it and again set it to an “in-progress” state.

Navigating	 lab	 stages	

Most labs will be divided into stages. Each stage will have its own set of activities, and in most
cases subsequent stages will build on the previous. So, for example, the end point of stage 1 will
usually be the start point of stage 2.

When you navigate to a new stage, the console will automatically change its state to bring in
everything you need for this stage. This means that the data in the console will change – so if
you were stuck on the previous stage, don’t worry, because moving to the new stage will
automatically give you everything you need to embark upon the next part of the lab.

To navigate between lab stages, there are buttons underneath the console pane, one for each
stage (how many there are will obviously depend on the lab itself). The current stage will be
highlighted; to move to the next (or indeed any other stage) simply click the appropriate button.

The first time you go to a lab stage, it will need to set itself up for you. You will see a message
like the following:

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 160	 September	 2010	

Figure 91

 As was the case when the initial lab was created, this process will take a few minutes to
complete. Half way through the process, the screen will change, and instead you will see the
message:

Waiting for your session to come on line. Please wait.

30 seconds or so after that, the console should re-appear, with the starting point of the next
stage ready to go.

This creation process only has to happen once per lab stage. Once the lab stage has been set up
for you, re-visiting it is more or less immediate. If you move backwards and go to a previous
stage, the previous stage will load in exactly the state you left it in.

Using	 the	 snapshot	 facilities	

WLab allows you to take a “snapshot” of a lab stage state. Think of this as a way of “saving” your
entire lab stage. If you take a snapshot before you embark upon something new, you can revert
back to the snapshot if it doesn’t work out as you hope.

To take a snapshot, click Take snapshot. You will see the console reload itself and after a
moment or two it should return you back to your lab exercise. However, once a snapshot has
been taken a new option is available, Revert to snapshot. If you select this, the lab stage will
lose any changes since the snapshot was taken, and it will revert to exactly the state as was then.

The system automatically takes a snapshot when the lab starts for the first time. If you really
make a mess of a lab stage, you might wish to use the option Revert to stage start. This will
take you all the way back to the state where you first started the lab stage – i.e. where the tutor
expected you to start that lab stage from. NOTE THIS WILL LOSE ANY AND ALL WORK
YOU’VE DONE IN THIS LAB STAGE, SO YOU SHOULD BE VERY CAREFUL
BEFORE USING IT!

Closing	 down	 your	 lab	

When you have finished working, you should always use the Suspend lab button. This will
close your lab down, and return you to the list of labs. In contrast, Return to main menu will
do just that and return you to the main menu, but it will leave your lab running on the server.
The only time you should ever use the Return to main menu option is if your tutor has told
you to do so (if, for example, you are going to run several labs at the same time).

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 161	 September	 2010	

Booking	 guaranteed	 time	 on	 the	 system	

The WLab system restricts students to a limited time window during which they can run labs, so
as to ensure that everybody gets a fair share of system resources. The amount of time available
to you is displayed on the initial page after login. If you run your labs for the entire allocated
time, they will be automatically suspended and you will be prevented from starting them again
for a defined “interregnum period” – this is also shown on the same page.

If you run your labs for a period of time shorter than the maximum, you are still subjected to the
interregnum period, but this is reduced proportionally depending on how long you used. The
table below illustrates this:

Student’s maximum
runtime

Maximum
interregnum period

Student’s actual
runtime

Actual interregnum
period

2 hours 30 minutes 2 hours 30 minutes
2 hours 30 minutes 1 hour 15 minutes
2 hours 30 minutes 15 minutes 3 minutes, 45

seconds

You may also be restricted from starting labs if other students are already using the system to its
maximum capacity.

In order to allow you the ability to choose when you work, a booking system is available and you
can access it by selecting the link to the Booking Page from the initial post-login screen:

Figure 92

Bookings are available in hour-long slots. Click a green slot to book it – it will change to blue.
Red-coloured slots indicate slots that are already booked to maximum capacity. Use the links at
the bottom left and bottom right to move between weeks, or click the date to select a date from a
calendar.

WLab:	 Providing	 E-‐Learning	 Tools	 for	 ICT	 Students	 using	 Virtual	 Machines	 as	 Learning	 Objects	

Paul	 Neve	 Page	 162	 September	 2010	

You will only be able to make a limited amount of future bookings. It is up to you how you use
these – you might want to place them one after another and give yourself the longest possible
guaranteed slot, or instead, you might want to stagger them and make sure you have regular lab
access albeit for smaller amounts of time.

You cannot change your bookings if, at the current moment in time, you have a
booked session in progress.

